On the equation $aX^4-bY^2=2$
Acta Arithmetica, Tome 131 (2008) no. 2, pp. 145-169.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa131-2-3

S. Akhtari 1 ; A. Togbé 2 ; P. G. Walsh 3

1 Department of Mathematics University of British Columbia Vancouver, BC, Canada V6T 1Z2
2 Department of Mathematics Purdue University North Central 1401 S. U.S. 421 Westville, IN 46391, U.S.A.
3 Department of Mathematics University of Ottawa 585 King Edward St. Ottawa, ON, Canada K1N 6N5
@article{10_4064_aa131_2_3,
     author = {S. Akhtari and A. Togb\'e and P. G. Walsh},
     title = {On the equation $aX^4-bY^2=2$},
     journal = {Acta Arithmetica},
     pages = {145--169},
     publisher = {mathdoc},
     volume = {131},
     number = {2},
     year = {2008},
     doi = {10.4064/aa131-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa131-2-3/}
}
TY  - JOUR
AU  - S. Akhtari
AU  - A. Togbé
AU  - P. G. Walsh
TI  - On the equation $aX^4-bY^2=2$
JO  - Acta Arithmetica
PY  - 2008
SP  - 145
EP  - 169
VL  - 131
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa131-2-3/
DO  - 10.4064/aa131-2-3
LA  - en
ID  - 10_4064_aa131_2_3
ER  - 
%0 Journal Article
%A S. Akhtari
%A A. Togbé
%A P. G. Walsh
%T On the equation $aX^4-bY^2=2$
%J Acta Arithmetica
%D 2008
%P 145-169
%V 131
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa131-2-3/
%R 10.4064/aa131-2-3
%G en
%F 10_4064_aa131_2_3
S. Akhtari; A. Togbé; P. G. Walsh. On the equation $aX^4-bY^2=2$. Acta Arithmetica, Tome 131 (2008) no. 2, pp. 145-169. doi : 10.4064/aa131-2-3. http://geodesic.mathdoc.fr/articles/10.4064/aa131-2-3/

Cité par Sources :