Approximating algebraic numbers by $j$-invariants of elliptic curves
Acta Arithmetica, Tome 131 (2008) no. 1, pp. 57-68.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa131-1-5

Patrick Ingram 1

1 Department of Mathematics University of Toronto Toronto, Ontario M5S 2E4, Canada
@article{10_4064_aa131_1_5,
     author = {Patrick Ingram},
     title = {Approximating algebraic numbers by $j$-invariants
 of elliptic curves},
     journal = {Acta Arithmetica},
     pages = {57--68},
     publisher = {mathdoc},
     volume = {131},
     number = {1},
     year = {2008},
     doi = {10.4064/aa131-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa131-1-5/}
}
TY  - JOUR
AU  - Patrick Ingram
TI  - Approximating algebraic numbers by $j$-invariants
 of elliptic curves
JO  - Acta Arithmetica
PY  - 2008
SP  - 57
EP  - 68
VL  - 131
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa131-1-5/
DO  - 10.4064/aa131-1-5
LA  - en
ID  - 10_4064_aa131_1_5
ER  - 
%0 Journal Article
%A Patrick Ingram
%T Approximating algebraic numbers by $j$-invariants
 of elliptic curves
%J Acta Arithmetica
%D 2008
%P 57-68
%V 131
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa131-1-5/
%R 10.4064/aa131-1-5
%G en
%F 10_4064_aa131_1_5
Patrick Ingram. Approximating algebraic numbers by $j$-invariants
 of elliptic curves. Acta Arithmetica, Tome 131 (2008) no. 1, pp. 57-68. doi : 10.4064/aa131-1-5. http://geodesic.mathdoc.fr/articles/10.4064/aa131-1-5/

Cité par Sources :