An effective Bertini theorem and the number of rational
points of a normal complete intersection over a finite field
Acta Arithmetica, Tome 130 (2007) no. 1, pp. 19-35
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Affiliations des auteurs :
Antonio Cafure 1 ; Guillermo Matera 2
@article{10_4064_aa130_1_2,
author = {Antonio Cafure and Guillermo Matera},
title = {An effective {Bertini} theorem and the number of rational
points of a normal complete intersection over a finite field},
journal = {Acta Arithmetica},
pages = {19--35},
year = {2007},
volume = {130},
number = {1},
doi = {10.4064/aa130-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa130-1-2/}
}
TY - JOUR AU - Antonio Cafure AU - Guillermo Matera TI - An effective Bertini theorem and the number of rational points of a normal complete intersection over a finite field JO - Acta Arithmetica PY - 2007 SP - 19 EP - 35 VL - 130 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa130-1-2/ DO - 10.4064/aa130-1-2 LA - en ID - 10_4064_aa130_1_2 ER -
%0 Journal Article %A Antonio Cafure %A Guillermo Matera %T An effective Bertini theorem and the number of rational points of a normal complete intersection over a finite field %J Acta Arithmetica %D 2007 %P 19-35 %V 130 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/aa130-1-2/ %R 10.4064/aa130-1-2 %G en %F 10_4064_aa130_1_2
Antonio Cafure; Guillermo Matera. An effective Bertini theorem and the number of rational points of a normal complete intersection over a finite field. Acta Arithmetica, Tome 130 (2007) no. 1, pp. 19-35. doi: 10.4064/aa130-1-2
Cité par Sources :