An effective Bertini theorem and the number of rational points of a normal complete intersection over a finite field
Acta Arithmetica, Tome 130 (2007) no. 1, pp. 19-35.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa130-1-2

Antonio Cafure 1 ; Guillermo Matera 2

1 Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón I 1428 Buenos Aires, Argentina and Instituto de Desarrollo Humano Universidad Nacional de General Sarmiento J. M. Gutiérrez 1150 1613 Los Polvorines, Buenos Aires, Argentina
2 Instituto de Desarrollo Humano Universidad Nacional de General Sarmiento J. M. Gutiérrez 1150 1613 Los Polvorines, Buenos Aires, Argentina and National Council of Science and Technology (CONICET), Argentina
@article{10_4064_aa130_1_2,
     author = {Antonio Cafure and Guillermo Matera},
     title = {An effective {Bertini} theorem and the number of rational
 points of a normal complete intersection over a finite field},
     journal = {Acta Arithmetica},
     pages = {19--35},
     publisher = {mathdoc},
     volume = {130},
     number = {1},
     year = {2007},
     doi = {10.4064/aa130-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa130-1-2/}
}
TY  - JOUR
AU  - Antonio Cafure
AU  - Guillermo Matera
TI  - An effective Bertini theorem and the number of rational
 points of a normal complete intersection over a finite field
JO  - Acta Arithmetica
PY  - 2007
SP  - 19
EP  - 35
VL  - 130
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa130-1-2/
DO  - 10.4064/aa130-1-2
LA  - en
ID  - 10_4064_aa130_1_2
ER  - 
%0 Journal Article
%A Antonio Cafure
%A Guillermo Matera
%T An effective Bertini theorem and the number of rational
 points of a normal complete intersection over a finite field
%J Acta Arithmetica
%D 2007
%P 19-35
%V 130
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa130-1-2/
%R 10.4064/aa130-1-2
%G en
%F 10_4064_aa130_1_2
Antonio Cafure; Guillermo Matera. An effective Bertini theorem and the number of rational
 points of a normal complete intersection over a finite field. Acta Arithmetica, Tome 130 (2007) no. 1, pp. 19-35. doi : 10.4064/aa130-1-2. http://geodesic.mathdoc.fr/articles/10.4064/aa130-1-2/

Cité par Sources :