Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Antonio Cafure 1 ; Guillermo Matera 2
@article{10_4064_aa130_1_2, author = {Antonio Cafure and Guillermo Matera}, title = {An effective {Bertini} theorem and the number of rational points of a normal complete intersection over a finite field}, journal = {Acta Arithmetica}, pages = {19--35}, publisher = {mathdoc}, volume = {130}, number = {1}, year = {2007}, doi = {10.4064/aa130-1-2}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa130-1-2/} }
TY - JOUR AU - Antonio Cafure AU - Guillermo Matera TI - An effective Bertini theorem and the number of rational points of a normal complete intersection over a finite field JO - Acta Arithmetica PY - 2007 SP - 19 EP - 35 VL - 130 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa130-1-2/ DO - 10.4064/aa130-1-2 LA - en ID - 10_4064_aa130_1_2 ER -
%0 Journal Article %A Antonio Cafure %A Guillermo Matera %T An effective Bertini theorem and the number of rational points of a normal complete intersection over a finite field %J Acta Arithmetica %D 2007 %P 19-35 %V 130 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa130-1-2/ %R 10.4064/aa130-1-2 %G en %F 10_4064_aa130_1_2
Antonio Cafure; Guillermo Matera. An effective Bertini theorem and the number of rational points of a normal complete intersection over a finite field. Acta Arithmetica, Tome 130 (2007) no. 1, pp. 19-35. doi : 10.4064/aa130-1-2. http://geodesic.mathdoc.fr/articles/10.4064/aa130-1-2/
Cité par Sources :