The equation $n(n+d) \cdots (n+(k-1)d)=by^2$ with $\omega (d)\le 6$ or $d\le 10^{10}$
Acta Arithmetica, Tome 129 (2007) no. 3, pp. 249-305.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa129-3-2

Shanta Laishram 1 ; T. N. Shorey 1

1 School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Mumbai 400005, India
@article{10_4064_aa129_3_2,
     author = {Shanta Laishram and T. N. Shorey},
     title = {The equation $n(n+d) \cdots (n+(k-1)d)=by^2$
 with $\omega (d)\le 6$ or $d\le 10^{10}$},
     journal = {Acta Arithmetica},
     pages = {249--305},
     publisher = {mathdoc},
     volume = {129},
     number = {3},
     year = {2007},
     doi = {10.4064/aa129-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa129-3-2/}
}
TY  - JOUR
AU  - Shanta Laishram
AU  - T. N. Shorey
TI  - The equation $n(n+d) \cdots (n+(k-1)d)=by^2$
 with $\omega (d)\le 6$ or $d\le 10^{10}$
JO  - Acta Arithmetica
PY  - 2007
SP  - 249
EP  - 305
VL  - 129
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa129-3-2/
DO  - 10.4064/aa129-3-2
LA  - en
ID  - 10_4064_aa129_3_2
ER  - 
%0 Journal Article
%A Shanta Laishram
%A T. N. Shorey
%T The equation $n(n+d) \cdots (n+(k-1)d)=by^2$
 with $\omega (d)\le 6$ or $d\le 10^{10}$
%J Acta Arithmetica
%D 2007
%P 249-305
%V 129
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa129-3-2/
%R 10.4064/aa129-3-2
%G en
%F 10_4064_aa129_3_2
Shanta Laishram; T. N. Shorey. The equation $n(n+d) \cdots (n+(k-1)d)=by^2$
 with $\omega (d)\le 6$ or $d\le 10^{10}$. Acta Arithmetica, Tome 129 (2007) no. 3, pp. 249-305. doi : 10.4064/aa129-3-2. http://geodesic.mathdoc.fr/articles/10.4064/aa129-3-2/

Cité par Sources :