The equation $n(n+d) \cdots (n+(k-1)d)=by^2$
with $\omega (d)\le 6$ or $d\le 10^{10}$
Acta Arithmetica, Tome 129 (2007) no. 3, pp. 249-305
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa129_3_2,
author = {Shanta Laishram and T. N. Shorey},
title = {The equation $n(n+d) \cdots (n+(k-1)d)=by^2$
with $\omega (d)\le 6$ or $d\le 10^{10}$},
journal = {Acta Arithmetica},
pages = {249--305},
publisher = {mathdoc},
volume = {129},
number = {3},
year = {2007},
doi = {10.4064/aa129-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa129-3-2/}
}
TY - JOUR
AU - Shanta Laishram
AU - T. N. Shorey
TI - The equation $n(n+d) \cdots (n+(k-1)d)=by^2$
with $\omega (d)\le 6$ or $d\le 10^{10}$
JO - Acta Arithmetica
PY - 2007
SP - 249
EP - 305
VL - 129
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa129-3-2/
DO - 10.4064/aa129-3-2
LA - en
ID - 10_4064_aa129_3_2
ER -
%0 Journal Article
%A Shanta Laishram
%A T. N. Shorey
%T The equation $n(n+d) \cdots (n+(k-1)d)=by^2$
with $\omega (d)\le 6$ or $d\le 10^{10}$
%J Acta Arithmetica
%D 2007
%P 249-305
%V 129
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa129-3-2/
%R 10.4064/aa129-3-2
%G en
%F 10_4064_aa129_3_2
Shanta Laishram; T. N. Shorey. The equation $n(n+d) \cdots (n+(k-1)d)=by^2$
with $\omega (d)\le 6$ or $d\le 10^{10}$. Acta Arithmetica, Tome 129 (2007) no. 3, pp. 249-305. doi: 10.4064/aa129-3-2
Cité par Sources :