Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa129_3_2, author = {Shanta Laishram and T. N. Shorey}, title = {The equation $n(n+d) \cdots (n+(k-1)d)=by^2$ with $\omega (d)\le 6$ or $d\le 10^{10}$}, journal = {Acta Arithmetica}, pages = {249--305}, publisher = {mathdoc}, volume = {129}, number = {3}, year = {2007}, doi = {10.4064/aa129-3-2}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa129-3-2/} }
TY - JOUR AU - Shanta Laishram AU - T. N. Shorey TI - The equation $n(n+d) \cdots (n+(k-1)d)=by^2$ with $\omega (d)\le 6$ or $d\le 10^{10}$ JO - Acta Arithmetica PY - 2007 SP - 249 EP - 305 VL - 129 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa129-3-2/ DO - 10.4064/aa129-3-2 LA - en ID - 10_4064_aa129_3_2 ER -
%0 Journal Article %A Shanta Laishram %A T. N. Shorey %T The equation $n(n+d) \cdots (n+(k-1)d)=by^2$ with $\omega (d)\le 6$ or $d\le 10^{10}$ %J Acta Arithmetica %D 2007 %P 249-305 %V 129 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa129-3-2/ %R 10.4064/aa129-3-2 %G en %F 10_4064_aa129_3_2
Shanta Laishram; T. N. Shorey. The equation $n(n+d) \cdots (n+(k-1)d)=by^2$ with $\omega (d)\le 6$ or $d\le 10^{10}$. Acta Arithmetica, Tome 129 (2007) no. 3, pp. 249-305. doi : 10.4064/aa129-3-2. http://geodesic.mathdoc.fr/articles/10.4064/aa129-3-2/
Cité par Sources :