Prime numbers of the form $p=m^2+n^2+1$ in short intervals
Acta Arithmetica, Tome 128 (2007) no. 2, pp. 193-200.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa128-2-9

Kaisa Matomäki 1

1 Department of Mathematics Royal Holloway, University of London Egham, Surrey TW20 0EX, United Kingdom
@article{10_4064_aa128_2_9,
     author = {Kaisa Matom\"aki},
     title = {Prime numbers of the form $p=m^2+n^2+1$ in short intervals},
     journal = {Acta Arithmetica},
     pages = {193--200},
     publisher = {mathdoc},
     volume = {128},
     number = {2},
     year = {2007},
     doi = {10.4064/aa128-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa128-2-9/}
}
TY  - JOUR
AU  - Kaisa Matomäki
TI  - Prime numbers of the form $p=m^2+n^2+1$ in short intervals
JO  - Acta Arithmetica
PY  - 2007
SP  - 193
EP  - 200
VL  - 128
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa128-2-9/
DO  - 10.4064/aa128-2-9
LA  - en
ID  - 10_4064_aa128_2_9
ER  - 
%0 Journal Article
%A Kaisa Matomäki
%T Prime numbers of the form $p=m^2+n^2+1$ in short intervals
%J Acta Arithmetica
%D 2007
%P 193-200
%V 128
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa128-2-9/
%R 10.4064/aa128-2-9
%G en
%F 10_4064_aa128_2_9
Kaisa Matomäki. Prime numbers of the form $p=m^2+n^2+1$ in short intervals. Acta Arithmetica, Tome 128 (2007) no. 2, pp. 193-200. doi : 10.4064/aa128-2-9. http://geodesic.mathdoc.fr/articles/10.4064/aa128-2-9/

Cité par Sources :