Lucas sequences whose $n$th term is
a square or an almost square
Acta Arithmetica, Tome 126 (2007) no. 3, pp. 261-280
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa126_3_4,
author = {A. Bremner and N. Tzanakis},
title = {Lucas sequences whose $n$th term is
a square or an almost square},
journal = {Acta Arithmetica},
pages = {261--280},
publisher = {mathdoc},
volume = {126},
number = {3},
year = {2007},
doi = {10.4064/aa126-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa126-3-4/}
}
TY - JOUR AU - A. Bremner AU - N. Tzanakis TI - Lucas sequences whose $n$th term is a square or an almost square JO - Acta Arithmetica PY - 2007 SP - 261 EP - 280 VL - 126 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa126-3-4/ DO - 10.4064/aa126-3-4 LA - en ID - 10_4064_aa126_3_4 ER -
A. Bremner; N. Tzanakis. Lucas sequences whose $n$th term is a square or an almost square. Acta Arithmetica, Tome 126 (2007) no. 3, pp. 261-280. doi: 10.4064/aa126-3-4
Cité par Sources :