Lucas sequences whose $n$th term is a square or an almost square
Acta Arithmetica, Tome 126 (2007) no. 3, pp. 261-280.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa126-3-4

A. Bremner 1 ; N. Tzanakis 2

1 Department of Mathematics Arizona State University Tempe, AZ 85287-1804, U.S.A.
2 Department of Mathematics University of Crete Iraklion, Greece
@article{10_4064_aa126_3_4,
     author = {A. Bremner and N. Tzanakis},
     title = {Lucas sequences whose $n$th term is
 a square or an almost square},
     journal = {Acta Arithmetica},
     pages = {261--280},
     publisher = {mathdoc},
     volume = {126},
     number = {3},
     year = {2007},
     doi = {10.4064/aa126-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa126-3-4/}
}
TY  - JOUR
AU  - A. Bremner
AU  - N. Tzanakis
TI  - Lucas sequences whose $n$th term is
 a square or an almost square
JO  - Acta Arithmetica
PY  - 2007
SP  - 261
EP  - 280
VL  - 126
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa126-3-4/
DO  - 10.4064/aa126-3-4
LA  - en
ID  - 10_4064_aa126_3_4
ER  - 
%0 Journal Article
%A A. Bremner
%A N. Tzanakis
%T Lucas sequences whose $n$th term is
 a square or an almost square
%J Acta Arithmetica
%D 2007
%P 261-280
%V 126
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa126-3-4/
%R 10.4064/aa126-3-4
%G en
%F 10_4064_aa126_3_4
A. Bremner; N. Tzanakis. Lucas sequences whose $n$th term is
 a square or an almost square. Acta Arithmetica, Tome 126 (2007) no. 3, pp. 261-280. doi : 10.4064/aa126-3-4. http://geodesic.mathdoc.fr/articles/10.4064/aa126-3-4/

Cité par Sources :