A characterization of rational elements by Lüroth-type series expansions in the $p$-adic number field and in the field of Laurent series over a finite field
Acta Arithmetica, Tome 122 (2006) no. 2, pp. 195-205.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa122-2-4

Vichian Laohakosol 1 ; Narakorn Rompurk 2

1 Department of Mathematics Kasetsart University Bangkok 10900, Thailand
2 Department of Mathematics Khon Kaen University Khon Kaen 40002, Thailand
@article{10_4064_aa122_2_4,
     author = {Vichian Laohakosol and Narakorn Rompurk},
     title = {A characterization of rational elements
 by {L\"uroth-type} series expansions in the $p$-adic number field
 and in the field of {Laurent} series over a finite field},
     journal = {Acta Arithmetica},
     pages = {195--205},
     publisher = {mathdoc},
     volume = {122},
     number = {2},
     year = {2006},
     doi = {10.4064/aa122-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa122-2-4/}
}
TY  - JOUR
AU  - Vichian Laohakosol
AU  - Narakorn Rompurk
TI  - A characterization of rational elements
 by Lüroth-type series expansions in the $p$-adic number field
 and in the field of Laurent series over a finite field
JO  - Acta Arithmetica
PY  - 2006
SP  - 195
EP  - 205
VL  - 122
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa122-2-4/
DO  - 10.4064/aa122-2-4
LA  - en
ID  - 10_4064_aa122_2_4
ER  - 
%0 Journal Article
%A Vichian Laohakosol
%A Narakorn Rompurk
%T A characterization of rational elements
 by Lüroth-type series expansions in the $p$-adic number field
 and in the field of Laurent series over a finite field
%J Acta Arithmetica
%D 2006
%P 195-205
%V 122
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa122-2-4/
%R 10.4064/aa122-2-4
%G en
%F 10_4064_aa122_2_4
Vichian Laohakosol; Narakorn Rompurk. A characterization of rational elements
 by Lüroth-type series expansions in the $p$-adic number field
 and in the field of Laurent series over a finite field. Acta Arithmetica, Tome 122 (2006) no. 2, pp. 195-205. doi : 10.4064/aa122-2-4. http://geodesic.mathdoc.fr/articles/10.4064/aa122-2-4/

Cité par Sources :