On the number of representations of $n$ by $ax^2+bxy+cy^2$
Acta Arithmetica, Tome 122 (2006) no. 2, pp. 101-171
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Affiliations des auteurs :
Zhi-Hong Sun 1 ; Kenneth S. Williams 2
@article{10_4064_aa122_2_1,
author = {Zhi-Hong Sun and Kenneth S. Williams},
title = {On the number of representations of $n$ by $ax^2+bxy+cy^2$},
journal = {Acta Arithmetica},
pages = {101--171},
publisher = {mathdoc},
volume = {122},
number = {2},
year = {2006},
doi = {10.4064/aa122-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa122-2-1/}
}
TY - JOUR AU - Zhi-Hong Sun AU - Kenneth S. Williams TI - On the number of representations of $n$ by $ax^2+bxy+cy^2$ JO - Acta Arithmetica PY - 2006 SP - 101 EP - 171 VL - 122 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa122-2-1/ DO - 10.4064/aa122-2-1 LA - en ID - 10_4064_aa122_2_1 ER -
Zhi-Hong Sun; Kenneth S. Williams. On the number of representations of $n$ by $ax^2+bxy+cy^2$. Acta Arithmetica, Tome 122 (2006) no. 2, pp. 101-171. doi: 10.4064/aa122-2-1
Cité par Sources :