On the number of representations of $n$ by $ax^2+bxy+cy^2$
Acta Arithmetica, Tome 122 (2006) no. 2, pp. 101-171.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa122-2-1

Zhi-Hong Sun 1 ; Kenneth S. Williams 2

1 Department of Mathematics Huaiyin Teachers College Huaian, Jiangsu 223001, P.R. China
2 Centre for Research in Algebra and Number Theory School of Mathematics and Statistics Carleton University Ottawa, Ontario K1S 5B6, Canada
@article{10_4064_aa122_2_1,
     author = {Zhi-Hong Sun and Kenneth S. Williams},
     title = {On the number of representations of $n$ by $ax^2+bxy+cy^2$},
     journal = {Acta Arithmetica},
     pages = {101--171},
     publisher = {mathdoc},
     volume = {122},
     number = {2},
     year = {2006},
     doi = {10.4064/aa122-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa122-2-1/}
}
TY  - JOUR
AU  - Zhi-Hong Sun
AU  - Kenneth S. Williams
TI  - On the number of representations of $n$ by $ax^2+bxy+cy^2$
JO  - Acta Arithmetica
PY  - 2006
SP  - 101
EP  - 171
VL  - 122
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa122-2-1/
DO  - 10.4064/aa122-2-1
LA  - en
ID  - 10_4064_aa122_2_1
ER  - 
%0 Journal Article
%A Zhi-Hong Sun
%A Kenneth S. Williams
%T On the number of representations of $n$ by $ax^2+bxy+cy^2$
%J Acta Arithmetica
%D 2006
%P 101-171
%V 122
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa122-2-1/
%R 10.4064/aa122-2-1
%G en
%F 10_4064_aa122_2_1
Zhi-Hong Sun; Kenneth S. Williams. On the number of representations of $n$ by $ax^2+bxy+cy^2$. Acta Arithmetica, Tome 122 (2006) no. 2, pp. 101-171. doi : 10.4064/aa122-2-1. http://geodesic.mathdoc.fr/articles/10.4064/aa122-2-1/

Cité par Sources :