Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa122_1_5, author = {Huaning Liu and Wenpeng Zhang}, title = {On the mean value of $L(m,\chi )L(n,\overline {\chi })$ at positive integers $m,n\geq 1$}, journal = {Acta Arithmetica}, pages = {51--56}, publisher = {mathdoc}, volume = {122}, number = {1}, year = {2006}, doi = {10.4064/aa122-1-5}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa122-1-5/} }
TY - JOUR AU - Huaning Liu AU - Wenpeng Zhang TI - On the mean value of $L(m,\chi )L(n,\overline {\chi })$ at positive integers $m,n\geq 1$ JO - Acta Arithmetica PY - 2006 SP - 51 EP - 56 VL - 122 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa122-1-5/ DO - 10.4064/aa122-1-5 LA - en ID - 10_4064_aa122_1_5 ER -
%0 Journal Article %A Huaning Liu %A Wenpeng Zhang %T On the mean value of $L(m,\chi )L(n,\overline {\chi })$ at positive integers $m,n\geq 1$ %J Acta Arithmetica %D 2006 %P 51-56 %V 122 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa122-1-5/ %R 10.4064/aa122-1-5 %G en %F 10_4064_aa122_1_5
Huaning Liu; Wenpeng Zhang. On the mean value of $L(m,\chi )L(n,\overline {\chi })$ at positive integers $m,n\geq 1$. Acta Arithmetica, Tome 122 (2006) no. 1, pp. 51-56. doi : 10.4064/aa122-1-5. http://geodesic.mathdoc.fr/articles/10.4064/aa122-1-5/
Cité par Sources :