On the mean value of $L(m,\chi )L(n,\overline {\chi })$ at
positive integers $m,n\geq 1$
Acta Arithmetica, Tome 122 (2006) no. 1, pp. 51-56
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa122_1_5,
author = {Huaning Liu and Wenpeng Zhang},
title = {On the mean value of $L(m,\chi )L(n,\overline {\chi })$ at
positive integers $m,n\geq 1$},
journal = {Acta Arithmetica},
pages = {51--56},
publisher = {mathdoc},
volume = {122},
number = {1},
year = {2006},
doi = {10.4064/aa122-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa122-1-5/}
}
TY - JOUR
AU - Huaning Liu
AU - Wenpeng Zhang
TI - On the mean value of $L(m,\chi )L(n,\overline {\chi })$ at
positive integers $m,n\geq 1$
JO - Acta Arithmetica
PY - 2006
SP - 51
EP - 56
VL - 122
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa122-1-5/
DO - 10.4064/aa122-1-5
LA - en
ID - 10_4064_aa122_1_5
ER -
%0 Journal Article
%A Huaning Liu
%A Wenpeng Zhang
%T On the mean value of $L(m,\chi )L(n,\overline {\chi })$ at
positive integers $m,n\geq 1$
%J Acta Arithmetica
%D 2006
%P 51-56
%V 122
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa122-1-5/
%R 10.4064/aa122-1-5
%G en
%F 10_4064_aa122_1_5
Huaning Liu; Wenpeng Zhang. On the mean value of $L(m,\chi )L(n,\overline {\chi })$ at
positive integers $m,n\geq 1$. Acta Arithmetica, Tome 122 (2006) no. 1, pp. 51-56. doi: 10.4064/aa122-1-5
Cité par Sources :