Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A. Togbe 1 ; P. M. Voutier 2 ; P. G. Walsh 3
@article{10_4064_aa120_1_3, author = {A. Togbe and P. M. Voutier and P. G. Walsh}, title = {Solving a family of {Thue} equations with an application to the equation $x^2-Dy^4=1$}, journal = {Acta Arithmetica}, pages = {39--58}, publisher = {mathdoc}, volume = {120}, number = {1}, year = {2005}, doi = {10.4064/aa120-1-3}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa120-1-3/} }
TY - JOUR AU - A. Togbe AU - P. M. Voutier AU - P. G. Walsh TI - Solving a family of Thue equations with an application to the equation $x^2-Dy^4=1$ JO - Acta Arithmetica PY - 2005 SP - 39 EP - 58 VL - 120 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa120-1-3/ DO - 10.4064/aa120-1-3 LA - en ID - 10_4064_aa120_1_3 ER -
%0 Journal Article %A A. Togbe %A P. M. Voutier %A P. G. Walsh %T Solving a family of Thue equations with an application to the equation $x^2-Dy^4=1$ %J Acta Arithmetica %D 2005 %P 39-58 %V 120 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa120-1-3/ %R 10.4064/aa120-1-3 %G en %F 10_4064_aa120_1_3
A. Togbe; P. M. Voutier; P. G. Walsh. Solving a family of Thue equations with an application to the equation $x^2-Dy^4=1$. Acta Arithmetica, Tome 120 (2005) no. 1, pp. 39-58. doi : 10.4064/aa120-1-3. http://geodesic.mathdoc.fr/articles/10.4064/aa120-1-3/
Cité par Sources :