Solving a family of Thue equations with an application to the equation $x^2-Dy^4=1$
Acta Arithmetica, Tome 120 (2005) no. 1, pp. 39-58.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa120-1-3

A. Togbe 1 ; P. M. Voutier 2 ; P. G. Walsh 3

1 Department of Mathematics Purdue University North Central 1401 S. U.S. 421 Westville, IN 46391, U.S.A.
2 UBS 100 Liverpool Street London, EC2M 2RH, United Kingdom
3 Department of Mathematics University of Ottawa 585 King Edward St. Ottawa, Ontario, Canada, K1N 6N5
@article{10_4064_aa120_1_3,
     author = {A. Togbe and P. M. Voutier and P. G. Walsh},
     title = {Solving a family of {Thue} equations
 with an application to the equation $x^2-Dy^4=1$},
     journal = {Acta Arithmetica},
     pages = {39--58},
     publisher = {mathdoc},
     volume = {120},
     number = {1},
     year = {2005},
     doi = {10.4064/aa120-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa120-1-3/}
}
TY  - JOUR
AU  - A. Togbe
AU  - P. M. Voutier
AU  - P. G. Walsh
TI  - Solving a family of Thue equations
 with an application to the equation $x^2-Dy^4=1$
JO  - Acta Arithmetica
PY  - 2005
SP  - 39
EP  - 58
VL  - 120
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa120-1-3/
DO  - 10.4064/aa120-1-3
LA  - en
ID  - 10_4064_aa120_1_3
ER  - 
%0 Journal Article
%A A. Togbe
%A P. M. Voutier
%A P. G. Walsh
%T Solving a family of Thue equations
 with an application to the equation $x^2-Dy^4=1$
%J Acta Arithmetica
%D 2005
%P 39-58
%V 120
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa120-1-3/
%R 10.4064/aa120-1-3
%G en
%F 10_4064_aa120_1_3
A. Togbe; P. M. Voutier; P. G. Walsh. Solving a family of Thue equations
 with an application to the equation $x^2-Dy^4=1$. Acta Arithmetica, Tome 120 (2005) no. 1, pp. 39-58. doi : 10.4064/aa120-1-3. http://geodesic.mathdoc.fr/articles/10.4064/aa120-1-3/

Cité par Sources :