New solutions to $xyz = x+y+z = 1$ in integers of quartic fields
Acta Arithmetica, Tome 112 (2004) no. 4, pp. 405-409.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa112-4-6

H. G. Grundman 1 ; L. L. Hall 1

1 Bryn Mawr College 101 N. Merion Ave. Bryn Mawr, PA 19010, U.S.A.
@article{10_4064_aa112_4_6,
     author = {H. G. Grundman and L. L. Hall},
     title = {New solutions to $xyz = x+y+z = 1$
 in integers of quartic fields},
     journal = {Acta Arithmetica},
     pages = {405--409},
     publisher = {mathdoc},
     volume = {112},
     number = {4},
     year = {2004},
     doi = {10.4064/aa112-4-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa112-4-6/}
}
TY  - JOUR
AU  - H. G. Grundman
AU  - L. L. Hall
TI  - New solutions to $xyz = x+y+z = 1$
 in integers of quartic fields
JO  - Acta Arithmetica
PY  - 2004
SP  - 405
EP  - 409
VL  - 112
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa112-4-6/
DO  - 10.4064/aa112-4-6
LA  - en
ID  - 10_4064_aa112_4_6
ER  - 
%0 Journal Article
%A H. G. Grundman
%A L. L. Hall
%T New solutions to $xyz = x+y+z = 1$
 in integers of quartic fields
%J Acta Arithmetica
%D 2004
%P 405-409
%V 112
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa112-4-6/
%R 10.4064/aa112-4-6
%G en
%F 10_4064_aa112_4_6
H. G. Grundman; L. L. Hall. New solutions to $xyz = x+y+z = 1$
 in integers of quartic fields. Acta Arithmetica, Tome 112 (2004) no. 4, pp. 405-409. doi : 10.4064/aa112-4-6. http://geodesic.mathdoc.fr/articles/10.4064/aa112-4-6/

Cité par Sources :