Metric properties for $p$-adic Oppenheim series expansions
Acta Arithmetica, Tome 112 (2004) no. 3, pp. 247-261.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa112-3-3

Jun Wu 1

1 Department of Mathematics Wuhan University Wuhan, Hubei, 430072, P.R. China
@article{10_4064_aa112_3_3,
     author = {Jun Wu},
     title = {Metric properties for $p$-adic {Oppenheim
} series expansions},
     journal = {Acta Arithmetica},
     pages = {247--261},
     publisher = {mathdoc},
     volume = {112},
     number = {3},
     year = {2004},
     doi = {10.4064/aa112-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa112-3-3/}
}
TY  - JOUR
AU  - Jun Wu
TI  - Metric properties for $p$-adic Oppenheim
 series expansions
JO  - Acta Arithmetica
PY  - 2004
SP  - 247
EP  - 261
VL  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa112-3-3/
DO  - 10.4064/aa112-3-3
LA  - en
ID  - 10_4064_aa112_3_3
ER  - 
%0 Journal Article
%A Jun Wu
%T Metric properties for $p$-adic Oppenheim
 series expansions
%J Acta Arithmetica
%D 2004
%P 247-261
%V 112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa112-3-3/
%R 10.4064/aa112-3-3
%G en
%F 10_4064_aa112_3_3
Jun Wu. Metric properties for $p$-adic Oppenheim
 series expansions. Acta Arithmetica, Tome 112 (2004) no. 3, pp. 247-261. doi : 10.4064/aa112-3-3. http://geodesic.mathdoc.fr/articles/10.4064/aa112-3-3/

Cité par Sources :