The number of $k$-sums of abelian groups of order $k$
Acta Arithmetica, Tome 112 (2004) no. 2, pp. 103-107.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa112-2-1

Hong Bing Yu 1

1 Department of Mathematics Suzhou University Suzhou 215006, Jiangsu, P.R. China
@article{10_4064_aa112_2_1,
     author = {Hong Bing Yu},
     title = {The number of $k$-sums of abelian groups of order $k$},
     journal = {Acta Arithmetica},
     pages = {103--107},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2004},
     doi = {10.4064/aa112-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa112-2-1/}
}
TY  - JOUR
AU  - Hong Bing Yu
TI  - The number of $k$-sums of abelian groups of order $k$
JO  - Acta Arithmetica
PY  - 2004
SP  - 103
EP  - 107
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa112-2-1/
DO  - 10.4064/aa112-2-1
LA  - en
ID  - 10_4064_aa112_2_1
ER  - 
%0 Journal Article
%A Hong Bing Yu
%T The number of $k$-sums of abelian groups of order $k$
%J Acta Arithmetica
%D 2004
%P 103-107
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa112-2-1/
%R 10.4064/aa112-2-1
%G en
%F 10_4064_aa112_2_1
Hong Bing Yu. The number of $k$-sums of abelian groups of order $k$. Acta Arithmetica, Tome 112 (2004) no. 2, pp. 103-107. doi : 10.4064/aa112-2-1. http://geodesic.mathdoc.fr/articles/10.4064/aa112-2-1/

Cité par Sources :