Metric properties of alternating Oppenheim expansions
Acta Arithmetica, Tome 109 (2003) no. 2, pp. 151-158.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa109-2-4

János Galambos 1 ; Imre Kátai 2 ; Min-Young Lee 3

1 Department of Mathematics Temple University, TU 038-16 Philadelphia, PA 19122, U.S.A.
2 Department of Computer Algebra Eötvös Loránd University H-1518 Budapest, Pf. 32, Hungary
3 Department of Mathematics Dankook University Seoul, South Korea
@article{10_4064_aa109_2_4,
     author = {J\'anos Galambos and Imre K\'atai and Min-Young Lee},
     title = {Metric properties of alternating {Oppenheim} expansions},
     journal = {Acta Arithmetica},
     pages = {151--158},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {2003},
     doi = {10.4064/aa109-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa109-2-4/}
}
TY  - JOUR
AU  - János Galambos
AU  - Imre Kátai
AU  - Min-Young Lee
TI  - Metric properties of alternating Oppenheim expansions
JO  - Acta Arithmetica
PY  - 2003
SP  - 151
EP  - 158
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa109-2-4/
DO  - 10.4064/aa109-2-4
LA  - en
ID  - 10_4064_aa109_2_4
ER  - 
%0 Journal Article
%A János Galambos
%A Imre Kátai
%A Min-Young Lee
%T Metric properties of alternating Oppenheim expansions
%J Acta Arithmetica
%D 2003
%P 151-158
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa109-2-4/
%R 10.4064/aa109-2-4
%G en
%F 10_4064_aa109_2_4
János Galambos; Imre Kátai; Min-Young Lee. Metric properties of alternating Oppenheim expansions. Acta Arithmetica, Tome 109 (2003) no. 2, pp. 151-158. doi : 10.4064/aa109-2-4. http://geodesic.mathdoc.fr/articles/10.4064/aa109-2-4/

Cité par Sources :