Subrings in imaginary quadratic fields which are not universal for $GE_2$
Acta Arithmetica, Tome 107 (2003) no. 3, pp. 299-305.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa107-3-6

Sheng Chen 1 ; Hong You 1

1 Department of Mathematics Harbin Institute of Technology Harbin 150001, P.R. China
@article{10_4064_aa107_3_6,
     author = {Sheng Chen and Hong You},
     title = {Subrings in imaginary quadratic fields which
 are not universal for $GE_2$},
     journal = {Acta Arithmetica},
     pages = {299--305},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {2003},
     doi = {10.4064/aa107-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa107-3-6/}
}
TY  - JOUR
AU  - Sheng Chen
AU  - Hong You
TI  - Subrings in imaginary quadratic fields which
 are not universal for $GE_2$
JO  - Acta Arithmetica
PY  - 2003
SP  - 299
EP  - 305
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa107-3-6/
DO  - 10.4064/aa107-3-6
LA  - en
ID  - 10_4064_aa107_3_6
ER  - 
%0 Journal Article
%A Sheng Chen
%A Hong You
%T Subrings in imaginary quadratic fields which
 are not universal for $GE_2$
%J Acta Arithmetica
%D 2003
%P 299-305
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa107-3-6/
%R 10.4064/aa107-3-6
%G en
%F 10_4064_aa107_3_6
Sheng Chen; Hong You. Subrings in imaginary quadratic fields which
 are not universal for $GE_2$. Acta Arithmetica, Tome 107 (2003) no. 3, pp. 299-305. doi : 10.4064/aa107-3-6. http://geodesic.mathdoc.fr/articles/10.4064/aa107-3-6/

Cité par Sources :