The terms $Cx^h$ $(h\ge 3)$ in Lucas sequences:
an algorithm and applications to diophantine equations
Acta Arithmetica, Tome 106 (2003) no. 2, pp. 105-114
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa106_2_1,
author = {Paulo Ribenboim},
title = {The terms $Cx^h$ $(h\ge 3)$ in {Lucas} sequences:
an algorithm and applications to diophantine equations},
journal = {Acta Arithmetica},
pages = {105--114},
publisher = {mathdoc},
volume = {106},
number = {2},
year = {2003},
doi = {10.4064/aa106-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa106-2-1/}
}
TY - JOUR AU - Paulo Ribenboim TI - The terms $Cx^h$ $(h\ge 3)$ in Lucas sequences: an algorithm and applications to diophantine equations JO - Acta Arithmetica PY - 2003 SP - 105 EP - 114 VL - 106 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa106-2-1/ DO - 10.4064/aa106-2-1 LA - en ID - 10_4064_aa106_2_1 ER -
%0 Journal Article %A Paulo Ribenboim %T The terms $Cx^h$ $(h\ge 3)$ in Lucas sequences: an algorithm and applications to diophantine equations %J Acta Arithmetica %D 2003 %P 105-114 %V 106 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa106-2-1/ %R 10.4064/aa106-2-1 %G en %F 10_4064_aa106_2_1
Paulo Ribenboim. The terms $Cx^h$ $(h\ge 3)$ in Lucas sequences: an algorithm and applications to diophantine equations. Acta Arithmetica, Tome 106 (2003) no. 2, pp. 105-114. doi: 10.4064/aa106-2-1
Cité par Sources :