The terms $Cx^h$ $(h\ge 3)$ in Lucas sequences: an algorithm and applications to diophantine equations
Acta Arithmetica, Tome 106 (2003) no. 2, pp. 105-114.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa106-2-1

Paulo Ribenboim 1

1 Department of Mathematics and Statistics Queen's University Kingston, Ontario Canada K7L 3N6
@article{10_4064_aa106_2_1,
     author = {Paulo Ribenboim},
     title = {The terms $Cx^h$ $(h\ge 3)$ in {Lucas} sequences:
  an algorithm and applications to diophantine equations},
     journal = {Acta Arithmetica},
     pages = {105--114},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2003},
     doi = {10.4064/aa106-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa106-2-1/}
}
TY  - JOUR
AU  - Paulo Ribenboim
TI  - The terms $Cx^h$ $(h\ge 3)$ in Lucas sequences:
  an algorithm and applications to diophantine equations
JO  - Acta Arithmetica
PY  - 2003
SP  - 105
EP  - 114
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa106-2-1/
DO  - 10.4064/aa106-2-1
LA  - en
ID  - 10_4064_aa106_2_1
ER  - 
%0 Journal Article
%A Paulo Ribenboim
%T The terms $Cx^h$ $(h\ge 3)$ in Lucas sequences:
  an algorithm and applications to diophantine equations
%J Acta Arithmetica
%D 2003
%P 105-114
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa106-2-1/
%R 10.4064/aa106-2-1
%G en
%F 10_4064_aa106_2_1
Paulo Ribenboim. The terms $Cx^h$ $(h\ge 3)$ in Lucas sequences:
  an algorithm and applications to diophantine equations. Acta Arithmetica, Tome 106 (2003) no. 2, pp. 105-114. doi : 10.4064/aa106-2-1. http://geodesic.mathdoc.fr/articles/10.4064/aa106-2-1/

Cité par Sources :