An infinite family of pairs of quadratic fields ${\Bbb Q}(\sqrt D)$ and ${\Bbb Q}(\sqrt { mD})$ whose class numbers are both divisible by 3
Acta Arithmetica, Tome 104 (2002) no. 2, pp. 129-136.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa104-2-3

Toru Komatsu 1

1 Department of Mathematics Tokyo Metropolitan University Minami-Ohsawa 1-1, Hachioji-shi Tokyo 192-0397, Japan
@article{10_4064_aa104_2_3,
     author = {Toru Komatsu},
     title = {An infinite family of pairs of quadratic fields ${\Bbb Q}(\sqrt D)$ and
 ${\Bbb Q}(\sqrt { mD})$ whose class numbers are both divisible by 3},
     journal = {Acta Arithmetica},
     pages = {129--136},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2002},
     doi = {10.4064/aa104-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa104-2-3/}
}
TY  - JOUR
AU  - Toru Komatsu
TI  - An infinite family of pairs of quadratic fields ${\Bbb Q}(\sqrt D)$ and
 ${\Bbb Q}(\sqrt { mD})$ whose class numbers are both divisible by 3
JO  - Acta Arithmetica
PY  - 2002
SP  - 129
EP  - 136
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa104-2-3/
DO  - 10.4064/aa104-2-3
LA  - en
ID  - 10_4064_aa104_2_3
ER  - 
%0 Journal Article
%A Toru Komatsu
%T An infinite family of pairs of quadratic fields ${\Bbb Q}(\sqrt D)$ and
 ${\Bbb Q}(\sqrt { mD})$ whose class numbers are both divisible by 3
%J Acta Arithmetica
%D 2002
%P 129-136
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa104-2-3/
%R 10.4064/aa104-2-3
%G en
%F 10_4064_aa104_2_3
Toru Komatsu. An infinite family of pairs of quadratic fields ${\Bbb Q}(\sqrt D)$ and
 ${\Bbb Q}(\sqrt { mD})$ whose class numbers are both divisible by 3. Acta Arithmetica, Tome 104 (2002) no. 2, pp. 129-136. doi : 10.4064/aa104-2-3. http://geodesic.mathdoc.fr/articles/10.4064/aa104-2-3/

Cité par Sources :