An infinite family of pairs of quadratic fields ${\Bbb Q}(\sqrt D)$ and
${\Bbb Q}(\sqrt { mD})$ whose class numbers are both divisible by 3
Acta Arithmetica, Tome 104 (2002) no. 2, pp. 129-136
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa104_2_3,
author = {Toru Komatsu},
title = {An infinite family of pairs of quadratic fields ${\Bbb Q}(\sqrt D)$ and
${\Bbb Q}(\sqrt { mD})$ whose class numbers are both divisible by 3},
journal = {Acta Arithmetica},
pages = {129--136},
publisher = {mathdoc},
volume = {104},
number = {2},
year = {2002},
doi = {10.4064/aa104-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa104-2-3/}
}
TY - JOUR
AU - Toru Komatsu
TI - An infinite family of pairs of quadratic fields ${\Bbb Q}(\sqrt D)$ and
${\Bbb Q}(\sqrt { mD})$ whose class numbers are both divisible by 3
JO - Acta Arithmetica
PY - 2002
SP - 129
EP - 136
VL - 104
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa104-2-3/
DO - 10.4064/aa104-2-3
LA - en
ID - 10_4064_aa104_2_3
ER -
%0 Journal Article
%A Toru Komatsu
%T An infinite family of pairs of quadratic fields ${\Bbb Q}(\sqrt D)$ and
${\Bbb Q}(\sqrt { mD})$ whose class numbers are both divisible by 3
%J Acta Arithmetica
%D 2002
%P 129-136
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa104-2-3/
%R 10.4064/aa104-2-3
%G en
%F 10_4064_aa104_2_3
Toru Komatsu. An infinite family of pairs of quadratic fields ${\Bbb Q}(\sqrt D)$ and
${\Bbb Q}(\sqrt { mD})$ whose class numbers are both divisible by 3. Acta Arithmetica, Tome 104 (2002) no. 2, pp. 129-136. doi: 10.4064/aa104-2-3
Cité par Sources :