Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa104_2_3, author = {Toru Komatsu}, title = {An infinite family of pairs of quadratic fields ${\Bbb Q}(\sqrt D)$ and ${\Bbb Q}(\sqrt { mD})$ whose class numbers are both divisible by 3}, journal = {Acta Arithmetica}, pages = {129--136}, publisher = {mathdoc}, volume = {104}, number = {2}, year = {2002}, doi = {10.4064/aa104-2-3}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa104-2-3/} }
TY - JOUR AU - Toru Komatsu TI - An infinite family of pairs of quadratic fields ${\Bbb Q}(\sqrt D)$ and ${\Bbb Q}(\sqrt { mD})$ whose class numbers are both divisible by 3 JO - Acta Arithmetica PY - 2002 SP - 129 EP - 136 VL - 104 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa104-2-3/ DO - 10.4064/aa104-2-3 LA - en ID - 10_4064_aa104_2_3 ER -
%0 Journal Article %A Toru Komatsu %T An infinite family of pairs of quadratic fields ${\Bbb Q}(\sqrt D)$ and ${\Bbb Q}(\sqrt { mD})$ whose class numbers are both divisible by 3 %J Acta Arithmetica %D 2002 %P 129-136 %V 104 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa104-2-3/ %R 10.4064/aa104-2-3 %G en %F 10_4064_aa104_2_3
Toru Komatsu. An infinite family of pairs of quadratic fields ${\Bbb Q}(\sqrt D)$ and ${\Bbb Q}(\sqrt { mD})$ whose class numbers are both divisible by 3. Acta Arithmetica, Tome 104 (2002) no. 2, pp. 129-136. doi : 10.4064/aa104-2-3. http://geodesic.mathdoc.fr/articles/10.4064/aa104-2-3/
Cité par Sources :