Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
H. M. Srivastava 1 ; Hirofumi Tsumura 2
@article{10_4064_aa100_2_6, author = {H. M. Srivastava and Hirofumi Tsumura}, title = {Certain classes of rapidly convergent series representations for $L(2n,\chi) $ and $L(2n+1,\chi)$}, journal = {Acta Arithmetica}, pages = {195--201}, publisher = {mathdoc}, volume = {100}, number = {2}, year = {2001}, doi = {10.4064/aa100-2-6}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa100-2-6/} }
TY - JOUR AU - H. M. Srivastava AU - Hirofumi Tsumura TI - Certain classes of rapidly convergent series representations for $L(2n,\chi) $ and $L(2n+1,\chi)$ JO - Acta Arithmetica PY - 2001 SP - 195 EP - 201 VL - 100 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa100-2-6/ DO - 10.4064/aa100-2-6 LA - en ID - 10_4064_aa100_2_6 ER -
%0 Journal Article %A H. M. Srivastava %A Hirofumi Tsumura %T Certain classes of rapidly convergent series representations for $L(2n,\chi) $ and $L(2n+1,\chi)$ %J Acta Arithmetica %D 2001 %P 195-201 %V 100 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa100-2-6/ %R 10.4064/aa100-2-6 %G en %F 10_4064_aa100_2_6
H. M. Srivastava; Hirofumi Tsumura. Certain classes of rapidly convergent series representations for $L(2n,\chi) $ and $L(2n+1,\chi)$. Acta Arithmetica, Tome 100 (2001) no. 2, pp. 195-201. doi : 10.4064/aa100-2-6. http://geodesic.mathdoc.fr/articles/10.4064/aa100-2-6/
Cité par Sources :