Certain classes of rapidly convergent series
representations for $L(2n,\chi) $ and $L(2n+1,\chi)$
Acta Arithmetica, Tome 100 (2001) no. 2, pp. 195-201
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Affiliations des auteurs :
H. M. Srivastava 1 ; Hirofumi Tsumura 2
@article{10_4064_aa100_2_6,
author = {H. M. Srivastava and Hirofumi Tsumura},
title = {Certain classes of rapidly convergent series
representations for $L(2n,\chi) $ and $L(2n+1,\chi)$},
journal = {Acta Arithmetica},
pages = {195--201},
publisher = {mathdoc},
volume = {100},
number = {2},
year = {2001},
doi = {10.4064/aa100-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa100-2-6/}
}
TY - JOUR AU - H. M. Srivastava AU - Hirofumi Tsumura TI - Certain classes of rapidly convergent series representations for $L(2n,\chi) $ and $L(2n+1,\chi)$ JO - Acta Arithmetica PY - 2001 SP - 195 EP - 201 VL - 100 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa100-2-6/ DO - 10.4064/aa100-2-6 LA - en ID - 10_4064_aa100_2_6 ER -
%0 Journal Article %A H. M. Srivastava %A Hirofumi Tsumura %T Certain classes of rapidly convergent series representations for $L(2n,\chi) $ and $L(2n+1,\chi)$ %J Acta Arithmetica %D 2001 %P 195-201 %V 100 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa100-2-6/ %R 10.4064/aa100-2-6 %G en %F 10_4064_aa100_2_6
H. M. Srivastava; Hirofumi Tsumura. Certain classes of rapidly convergent series representations for $L(2n,\chi) $ and $L(2n+1,\chi)$. Acta Arithmetica, Tome 100 (2001) no. 2, pp. 195-201. doi: 10.4064/aa100-2-6
Cité par Sources :