Certain classes of rapidly convergent series representations for $L(2n,\chi) $ and $L(2n+1,\chi)$
Acta Arithmetica, Tome 100 (2001) no. 2, pp. 195-201.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa100-2-6

H. M. Srivastava 1 ; Hirofumi Tsumura 2

1 Department of Mathematics and Statistics University of Victoria Victoria, British Columbia V8W 3P4, Canada
2 Department of Management Tokyo Metropolitan College Akishima, Tokyo 196-8540, Japan
@article{10_4064_aa100_2_6,
     author = {H. M. Srivastava and Hirofumi Tsumura},
     title = {Certain classes of rapidly convergent series
representations for $L(2n,\chi) $ and $L(2n+1,\chi)$},
     journal = {Acta Arithmetica},
     pages = {195--201},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {2001},
     doi = {10.4064/aa100-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa100-2-6/}
}
TY  - JOUR
AU  - H. M. Srivastava
AU  - Hirofumi Tsumura
TI  - Certain classes of rapidly convergent series
representations for $L(2n,\chi) $ and $L(2n+1,\chi)$
JO  - Acta Arithmetica
PY  - 2001
SP  - 195
EP  - 201
VL  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa100-2-6/
DO  - 10.4064/aa100-2-6
LA  - en
ID  - 10_4064_aa100_2_6
ER  - 
%0 Journal Article
%A H. M. Srivastava
%A Hirofumi Tsumura
%T Certain classes of rapidly convergent series
representations for $L(2n,\chi) $ and $L(2n+1,\chi)$
%J Acta Arithmetica
%D 2001
%P 195-201
%V 100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa100-2-6/
%R 10.4064/aa100-2-6
%G en
%F 10_4064_aa100_2_6
H. M. Srivastava; Hirofumi Tsumura. Certain classes of rapidly convergent series
representations for $L(2n,\chi) $ and $L(2n+1,\chi)$. Acta Arithmetica, Tome 100 (2001) no. 2, pp. 195-201. doi : 10.4064/aa100-2-6. http://geodesic.mathdoc.fr/articles/10.4064/aa100-2-6/

Cité par Sources :