On the vanishing of Iwasawa invariants of absolutely abelian p-extensions
Acta Arithmetica, Tome 94 (2000) no. 4, pp. 365-371.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

1. Introduction. Let p be a prime number and $ℤ_p$ the ring of p-adic integers. Let k be a finite extension of the rational number field ℚ, $k_{∞}$ a $ℤ_p$-extension of k, $k_n$ the nth layer of $k_{∞}/k$, and $A_n$ the p-Sylow subgroup of the ideal class group of $k_n$. Iwasawa proved the following well-known theorem about the order $#A_n$ of $A_n$: Theorem A (Iwasawa). Let $k_{∞}/k$ be a $ℤ_p$-extension and $A_n$ the p-Sylow subgroup of the ideal class group of $k_n$, where $k_n$ is the $n$th layer of $k_{∞}/k$. Then there exist integers $λ = λ(k_{∞}/k) ≥ 0 $, $μ = μ(k_{∞}/k) ≥ 0 $, $ν = ν(k_{∞}/k)$, and n₀ ≥ 0 such that $#A_n = p^{λn + μp^n + ν}$ for all n ≥ n₀, where $#A_n$ is the order of $A_n$. These integers $λ = λ(k_{∞}/k)$, $μ = μ(k_{∞}/k)$ and $ν = ν(k_{∞}/k)$ are called Iwasawa invariants of $k_{∞}/k$ for p. If $k_{∞}$ is the cyclotomic $ℤ_p$-extension of k, then we denote λ (resp. μ and ν) by $λ_p(k)$ (resp. $μ_p(k)$ and $ν_p(k)$). Ferrero and Washington proved $μ_p(k) = 0$ for any abelian extension field k of ℚ. On the other hand, Greenberg [4] conjectured that if k is a totally real, then $λ_p(k) = μ_p(k) = 0$. We call this conjecture Greenberg's conjecture. In this paper, we determine all absolutely abelian p-extensions k with $λ_p(k) = μ_p(k) = ν_p(k) = 0$ for an odd prime p, by using the results of G. Cornell and M. Rosen [1].
DOI : 10.4064/aa-94-4-365-371

Gen Yamamoto 1

1
@article{10_4064_aa_94_4_365_371,
     author = {Gen Yamamoto},
     title = {On the vanishing of {Iwasawa} invariants of absolutely abelian p-extensions},
     journal = {Acta Arithmetica},
     pages = {365--371},
     publisher = {mathdoc},
     volume = {94},
     number = {4},
     year = {2000},
     doi = {10.4064/aa-94-4-365-371},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-94-4-365-371/}
}
TY  - JOUR
AU  - Gen Yamamoto
TI  - On the vanishing of Iwasawa invariants of absolutely abelian p-extensions
JO  - Acta Arithmetica
PY  - 2000
SP  - 365
EP  - 371
VL  - 94
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-94-4-365-371/
DO  - 10.4064/aa-94-4-365-371
LA  - en
ID  - 10_4064_aa_94_4_365_371
ER  - 
%0 Journal Article
%A Gen Yamamoto
%T On the vanishing of Iwasawa invariants of absolutely abelian p-extensions
%J Acta Arithmetica
%D 2000
%P 365-371
%V 94
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-94-4-365-371/
%R 10.4064/aa-94-4-365-371
%G en
%F 10_4064_aa_94_4_365_371
Gen Yamamoto. On the vanishing of Iwasawa invariants of absolutely abelian p-extensions. Acta Arithmetica, Tome 94 (2000) no. 4, pp. 365-371. doi : 10.4064/aa-94-4-365-371. http://geodesic.mathdoc.fr/articles/10.4064/aa-94-4-365-371/

Cité par Sources :