The exceptional set of Goldbach numbers (II)
Acta Arithmetica, Tome 92 (2000) no. 1, pp. 71-88.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

1. Introduction. A positive number which is a sum of two odd primes is called a Goldbach number. Let E(x) denote the number of even numbers not exceeding x which cannot be written as a sum of two odd primes. Then the Goldbach conjecture is equivalent to proving that E(x) = 2 for every x ≥ 4. E(x) is usually called the exceptional set of Goldbach numbers. In [8] H. L. Montgomery and R. C. Vaughan proved that $E(x) = O(x^{1-Δ})$ for some positive constant Δ > 0$. In [3] Chen and Pan proved that one can take Δ >0.01. In [6], we proved thatE(x) = O(x^{0.921})$. In this paper we prove the following result. Theorem. For sufficiently large x, $E(x) =O (x^{0.914})$. Throughout this paper, ε always denotes a sufficiently small positive number that may be different at each occurrence. A is assumed to be sufficiently large, A Y, and $D = Y^{1+ε}$.
DOI : 10.4064/aa-92-1-71-88

Hongze Li 1

1
@article{10_4064_aa_92_1_71_88,
     author = {Hongze Li},
     title = {The exceptional set of {Goldbach} numbers {(II)}},
     journal = {Acta Arithmetica},
     pages = {71--88},
     publisher = {mathdoc},
     volume = {92},
     number = {1},
     year = {2000},
     doi = {10.4064/aa-92-1-71-88},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-92-1-71-88/}
}
TY  - JOUR
AU  - Hongze Li
TI  - The exceptional set of Goldbach numbers (II)
JO  - Acta Arithmetica
PY  - 2000
SP  - 71
EP  - 88
VL  - 92
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-92-1-71-88/
DO  - 10.4064/aa-92-1-71-88
LA  - en
ID  - 10_4064_aa_92_1_71_88
ER  - 
%0 Journal Article
%A Hongze Li
%T The exceptional set of Goldbach numbers (II)
%J Acta Arithmetica
%D 2000
%P 71-88
%V 92
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-92-1-71-88/
%R 10.4064/aa-92-1-71-88
%G en
%F 10_4064_aa_92_1_71_88
Hongze Li. The exceptional set of Goldbach numbers (II). Acta Arithmetica, Tome 92 (2000) no. 1, pp. 71-88. doi : 10.4064/aa-92-1-71-88. http://geodesic.mathdoc.fr/articles/10.4064/aa-92-1-71-88/

Cité par Sources :