Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions
Acta Arithmetica, Tome 91 (1999) no. 1, pp. 57-73.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

1. Summary. In Part II we study arithmetic functions whose Dirichlet series satisfy a rather general type of functional equation. For the logarithmic Riesz mean of these functions we give a representation involving finite trigonometric sums. An essential tool here is the saddle point method. Estimation of the exponential sums in the special case of the circle problem will be the topic of Part III.
DOI : 10.4064/aa-91-1-57-73

Ulrike Vorhauer 1

1
@article{10_4064_aa_91_1_57_73,
     author = {Ulrike Vorhauer},
     title = {Three two-dimensional {Weyl} steps in the circle problem {II.} {The} logarithmic {Riesz} mean for a class of arithmetic functions},
     journal = {Acta Arithmetica},
     pages = {57--73},
     publisher = {mathdoc},
     volume = {91},
     number = {1},
     year = {1999},
     doi = {10.4064/aa-91-1-57-73},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-91-1-57-73/}
}
TY  - JOUR
AU  - Ulrike Vorhauer
TI  - Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions
JO  - Acta Arithmetica
PY  - 1999
SP  - 57
EP  - 73
VL  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-91-1-57-73/
DO  - 10.4064/aa-91-1-57-73
LA  - en
ID  - 10_4064_aa_91_1_57_73
ER  - 
%0 Journal Article
%A Ulrike Vorhauer
%T Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions
%J Acta Arithmetica
%D 1999
%P 57-73
%V 91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-91-1-57-73/
%R 10.4064/aa-91-1-57-73
%G en
%F 10_4064_aa_91_1_57_73
Ulrike Vorhauer. Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions. Acta Arithmetica, Tome 91 (1999) no. 1, pp. 57-73. doi : 10.4064/aa-91-1-57-73. http://geodesic.mathdoc.fr/articles/10.4064/aa-91-1-57-73/

Cité par Sources :