Rapidly convergent series representations for ζ(2n+1) and their χ-analogue
Acta Arithmetica, Tome 90 (1999) no. 1, pp. 79-89
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Keywords:
Riemann zeta-function, Dirichlet L-function, Mellin-Barnes integral, series representation
Affiliations des auteurs :
Masanori Katsurada 1
@article{10_4064_aa_90_1_79_89,
author = {Masanori Katsurada},
title = {Rapidly convergent series representations for \ensuremath{\zeta}(2n+1) and their \ensuremath{\chi}-analogue},
journal = {Acta Arithmetica},
pages = {79--89},
publisher = {mathdoc},
volume = {90},
number = {1},
year = {1999},
doi = {10.4064/aa-90-1-79-89},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-90-1-79-89/}
}
TY - JOUR AU - Masanori Katsurada TI - Rapidly convergent series representations for ζ(2n+1) and their χ-analogue JO - Acta Arithmetica PY - 1999 SP - 79 EP - 89 VL - 90 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-90-1-79-89/ DO - 10.4064/aa-90-1-79-89 LA - en ID - 10_4064_aa_90_1_79_89 ER -
Masanori Katsurada. Rapidly convergent series representations for ζ(2n+1) and their χ-analogue. Acta Arithmetica, Tome 90 (1999) no. 1, pp. 79-89. doi: 10.4064/aa-90-1-79-89
Cité par Sources :