Rapidly convergent series representations for ζ(2n+1) and their χ-analogue
Acta Arithmetica, Tome 90 (1999) no. 1, pp. 79-89.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa-90-1-79-89
Keywords: Riemann zeta-function, Dirichlet L-function, Mellin-Barnes integral, series representation

Masanori Katsurada 1

1
@article{10_4064_aa_90_1_79_89,
     author = {Masanori Katsurada},
     title = {Rapidly convergent series representations for \ensuremath{\zeta}(2n+1) and their \ensuremath{\chi}-analogue},
     journal = {Acta Arithmetica},
     pages = {79--89},
     publisher = {mathdoc},
     volume = {90},
     number = {1},
     year = {1999},
     doi = {10.4064/aa-90-1-79-89},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-90-1-79-89/}
}
TY  - JOUR
AU  - Masanori Katsurada
TI  - Rapidly convergent series representations for ζ(2n+1) and their χ-analogue
JO  - Acta Arithmetica
PY  - 1999
SP  - 79
EP  - 89
VL  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-90-1-79-89/
DO  - 10.4064/aa-90-1-79-89
LA  - en
ID  - 10_4064_aa_90_1_79_89
ER  - 
%0 Journal Article
%A Masanori Katsurada
%T Rapidly convergent series representations for ζ(2n+1) and their χ-analogue
%J Acta Arithmetica
%D 1999
%P 79-89
%V 90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-90-1-79-89/
%R 10.4064/aa-90-1-79-89
%G en
%F 10_4064_aa_90_1_79_89
Masanori Katsurada. Rapidly convergent series representations for ζ(2n+1) and their χ-analogue. Acta Arithmetica, Tome 90 (1999) no. 1, pp. 79-89. doi : 10.4064/aa-90-1-79-89. http://geodesic.mathdoc.fr/articles/10.4064/aa-90-1-79-89/

Cité par Sources :