Concordant sequences and integral-valued entire functions
Acta Arithmetica, Tome 88 (1999) no. 3, pp. 239-268
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A classic theorem of Pólya shows that the function $2^z$ is the "smallest" integral-valued entire transcendental function. A variant due to Gel'fond applies to entire functions taking integral values on a geometric progression of integers, and Bézivin has given a generalization of both results. We give a sharp formulation of Bézivin's result together with a further generalization.
Affiliations des auteurs :
Jonathan Pila 1 ; Fernando Rodriguez Villegas 1
@article{10_4064_aa_88_3_239_268,
author = {Jonathan Pila and Fernando Rodriguez Villegas},
title = {Concordant sequences and integral-valued entire functions},
journal = {Acta Arithmetica},
pages = {239--268},
publisher = {mathdoc},
volume = {88},
number = {3},
year = {1999},
doi = {10.4064/aa-88-3-239-268},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-88-3-239-268/}
}
TY - JOUR AU - Jonathan Pila AU - Fernando Rodriguez Villegas TI - Concordant sequences and integral-valued entire functions JO - Acta Arithmetica PY - 1999 SP - 239 EP - 268 VL - 88 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-88-3-239-268/ DO - 10.4064/aa-88-3-239-268 LA - en ID - 10_4064_aa_88_3_239_268 ER -
%0 Journal Article %A Jonathan Pila %A Fernando Rodriguez Villegas %T Concordant sequences and integral-valued entire functions %J Acta Arithmetica %D 1999 %P 239-268 %V 88 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa-88-3-239-268/ %R 10.4064/aa-88-3-239-268 %G en %F 10_4064_aa_88_3_239_268
Jonathan Pila; Fernando Rodriguez Villegas. Concordant sequences and integral-valued entire functions. Acta Arithmetica, Tome 88 (1999) no. 3, pp. 239-268. doi: 10.4064/aa-88-3-239-268
Cité par Sources :