Concordant sequences and integral-valued entire functions
Acta Arithmetica, Tome 88 (1999) no. 3, pp. 239-268.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A classic theorem of Pólya shows that the function $2^z$ is the "smallest" integral-valued entire transcendental function. A variant due to Gel'fond applies to entire functions taking integral values on a geometric progression of integers, and Bézivin has given a generalization of both results. We give a sharp formulation of Bézivin's result together with a further generalization.
DOI : 10.4064/aa-88-3-239-268

Jonathan Pila 1 ; Fernando Rodriguez Villegas 1

1
@article{10_4064_aa_88_3_239_268,
     author = {Jonathan Pila and Fernando Rodriguez Villegas},
     title = {Concordant sequences and integral-valued entire functions},
     journal = {Acta Arithmetica},
     pages = {239--268},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {1999},
     doi = {10.4064/aa-88-3-239-268},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-88-3-239-268/}
}
TY  - JOUR
AU  - Jonathan Pila
AU  - Fernando Rodriguez Villegas
TI  - Concordant sequences and integral-valued entire functions
JO  - Acta Arithmetica
PY  - 1999
SP  - 239
EP  - 268
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-88-3-239-268/
DO  - 10.4064/aa-88-3-239-268
LA  - en
ID  - 10_4064_aa_88_3_239_268
ER  - 
%0 Journal Article
%A Jonathan Pila
%A Fernando Rodriguez Villegas
%T Concordant sequences and integral-valued entire functions
%J Acta Arithmetica
%D 1999
%P 239-268
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-88-3-239-268/
%R 10.4064/aa-88-3-239-268
%G en
%F 10_4064_aa_88_3_239_268
Jonathan Pila; Fernando Rodriguez Villegas. Concordant sequences and integral-valued entire functions. Acta Arithmetica, Tome 88 (1999) no. 3, pp. 239-268. doi : 10.4064/aa-88-3-239-268. http://geodesic.mathdoc.fr/articles/10.4064/aa-88-3-239-268/

Cité par Sources :