Certain L-functions at s = 1/2
Acta Arithmetica, Tome 88 (1999) no. 1, pp. 51-66.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Introduction. The vanishing orders of L-functions at the centers of their functional equations are interesting objects to study as one sees, for example, from the Birch-Swinnerton-Dyer conjecture on the Hasse-Weil L-functions associated with elliptic curves over number fields.    In this paper we study the central zeros of the following types of L-functions:    (i) the derivatives of the Mellin transforms of Hecke eigenforms for SL₂(ℤ),    (ii) the Rankin-Selberg convolution for a pair of Hecke eigenforms for SL₂(ℤ),    (iii) the Dedekind zeta functions.   The paper is organized as follows. In Section 1, the Mellin transform L(s,f) of a holomorphic Hecke eigenform f for SL₂(ℤ) is studied. We note that every L-function in this paper is normalized so that it has a functional equation under the substitution s ↦ 1-s. In Section 2, we study some nonvanishing property of the Rankin-Selberg convolutions at s=1/2. Section 3 contains Kurokawa's result asserting the existence of number fields such that the vanishing order of the Dedekind zeta function at s=1/2 goes to infinity.
DOI : 10.4064/aa-88-1-51-66

Shin-ichiro Mizumoto 1

1
@article{10_4064_aa_88_1_51_66,
     author = {Shin-ichiro Mizumoto},
     title = {Certain {L-functions} at s = 1/2},
     journal = {Acta Arithmetica},
     pages = {51--66},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {1999},
     doi = {10.4064/aa-88-1-51-66},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-88-1-51-66/}
}
TY  - JOUR
AU  - Shin-ichiro Mizumoto
TI  - Certain L-functions at s = 1/2
JO  - Acta Arithmetica
PY  - 1999
SP  - 51
EP  - 66
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-88-1-51-66/
DO  - 10.4064/aa-88-1-51-66
LA  - en
ID  - 10_4064_aa_88_1_51_66
ER  - 
%0 Journal Article
%A Shin-ichiro Mizumoto
%T Certain L-functions at s = 1/2
%J Acta Arithmetica
%D 1999
%P 51-66
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-88-1-51-66/
%R 10.4064/aa-88-1-51-66
%G en
%F 10_4064_aa_88_1_51_66
Shin-ichiro Mizumoto. Certain L-functions at s = 1/2. Acta Arithmetica, Tome 88 (1999) no. 1, pp. 51-66. doi : 10.4064/aa-88-1-51-66. http://geodesic.mathdoc.fr/articles/10.4064/aa-88-1-51-66/

Cité par Sources :