A generalisation of Mahler measure and its application in algebraic dynamical systems
Acta Arithmetica, Tome 88 (1999) no. 1, pp. 15-29
We prove a generalisation of the entropy formula for certain algebraic $ℤ^d$-actions given in [2] and [4]. This formula expresses the entropy as the logarithm of the Mahler measure of a Laurent polynomial in d variables with integral coefficients. We replace the rational integers by the integers in a number field and examine the entropy of the corresponding dynamical system.
@article{10_4064_aa_88_1_15_29,
author = {Manfred Einsiedler},
title = {A generalisation of {Mahler} measure and its application in algebraic dynamical systems},
journal = {Acta Arithmetica},
pages = {15--29},
year = {1999},
volume = {88},
number = {1},
doi = {10.4064/aa-88-1-15-29},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-88-1-15-29/}
}
TY - JOUR AU - Manfred Einsiedler TI - A generalisation of Mahler measure and its application in algebraic dynamical systems JO - Acta Arithmetica PY - 1999 SP - 15 EP - 29 VL - 88 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-88-1-15-29/ DO - 10.4064/aa-88-1-15-29 LA - en ID - 10_4064_aa_88_1_15_29 ER -
Manfred Einsiedler. A generalisation of Mahler measure and its application in algebraic dynamical systems. Acta Arithmetica, Tome 88 (1999) no. 1, pp. 15-29. doi: 10.4064/aa-88-1-15-29
Cité par Sources :