A generalisation of Mahler measure and its application in algebraic dynamical systems
Acta Arithmetica, Tome 88 (1999) no. 1, pp. 15-29.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a generalisation of the entropy formula for certain algebraic $ℤ^d$-actions given in [2] and [4]. This formula expresses the entropy as the logarithm of the Mahler measure of a Laurent polynomial in d variables with integral coefficients. We replace the rational integers by the integers in a number field and examine the entropy of the corresponding dynamical system.
DOI : 10.4064/aa-88-1-15-29

Manfred Einsiedler 1

1
@article{10_4064_aa_88_1_15_29,
     author = {Manfred Einsiedler},
     title = {A generalisation of {Mahler} measure and its application in algebraic dynamical systems},
     journal = {Acta Arithmetica},
     pages = {15--29},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {1999},
     doi = {10.4064/aa-88-1-15-29},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-88-1-15-29/}
}
TY  - JOUR
AU  - Manfred Einsiedler
TI  - A generalisation of Mahler measure and its application in algebraic dynamical systems
JO  - Acta Arithmetica
PY  - 1999
SP  - 15
EP  - 29
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-88-1-15-29/
DO  - 10.4064/aa-88-1-15-29
LA  - en
ID  - 10_4064_aa_88_1_15_29
ER  - 
%0 Journal Article
%A Manfred Einsiedler
%T A generalisation of Mahler measure and its application in algebraic dynamical systems
%J Acta Arithmetica
%D 1999
%P 15-29
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-88-1-15-29/
%R 10.4064/aa-88-1-15-29
%G en
%F 10_4064_aa_88_1_15_29
Manfred Einsiedler. A generalisation of Mahler measure and its application in algebraic dynamical systems. Acta Arithmetica, Tome 88 (1999) no. 1, pp. 15-29. doi : 10.4064/aa-88-1-15-29. http://geodesic.mathdoc.fr/articles/10.4064/aa-88-1-15-29/

Cité par Sources :