On the number of elements with maximal order in the multiplicative group modulo n
Acta Arithmetica, Tome 86 (1998) no. 2, pp. 113-132
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa_86_2_113_132,
author = {Shuguang Li},
title = {On the number of elements with maximal order in the multiplicative group modulo n},
journal = {Acta Arithmetica},
pages = {113--132},
publisher = {mathdoc},
volume = {86},
number = {2},
year = {1998},
doi = {10.4064/aa-86-2-113-132},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-86-2-113-132/}
}
TY - JOUR AU - Shuguang Li TI - On the number of elements with maximal order in the multiplicative group modulo n JO - Acta Arithmetica PY - 1998 SP - 113 EP - 132 VL - 86 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-86-2-113-132/ DO - 10.4064/aa-86-2-113-132 LA - en ID - 10_4064_aa_86_2_113_132 ER -
%0 Journal Article %A Shuguang Li %T On the number of elements with maximal order in the multiplicative group modulo n %J Acta Arithmetica %D 1998 %P 113-132 %V 86 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa-86-2-113-132/ %R 10.4064/aa-86-2-113-132 %G en %F 10_4064_aa_86_2_113_132
Shuguang Li. On the number of elements with maximal order in the multiplicative group modulo n. Acta Arithmetica, Tome 86 (1998) no. 2, pp. 113-132. doi: 10.4064/aa-86-2-113-132
Cité par Sources :