On the number of elements with maximal order in the multiplicative group modulo n
Acta Arithmetica, Tome 86 (1998) no. 2, pp. 113-132.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa-86-2-113-132

Shuguang Li 1

1
@article{10_4064_aa_86_2_113_132,
     author = {Shuguang Li},
     title = {On the number of elements with maximal order in the multiplicative group modulo n},
     journal = {Acta Arithmetica},
     pages = {113--132},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {1998},
     doi = {10.4064/aa-86-2-113-132},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-86-2-113-132/}
}
TY  - JOUR
AU  - Shuguang Li
TI  - On the number of elements with maximal order in the multiplicative group modulo n
JO  - Acta Arithmetica
PY  - 1998
SP  - 113
EP  - 132
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-86-2-113-132/
DO  - 10.4064/aa-86-2-113-132
LA  - en
ID  - 10_4064_aa_86_2_113_132
ER  - 
%0 Journal Article
%A Shuguang Li
%T On the number of elements with maximal order in the multiplicative group modulo n
%J Acta Arithmetica
%D 1998
%P 113-132
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-86-2-113-132/
%R 10.4064/aa-86-2-113-132
%G en
%F 10_4064_aa_86_2_113_132
Shuguang Li. On the number of elements with maximal order in the multiplicative group modulo n. Acta Arithmetica, Tome 86 (1998) no. 2, pp. 113-132. doi : 10.4064/aa-86-2-113-132. http://geodesic.mathdoc.fr/articles/10.4064/aa-86-2-113-132/

Cité par Sources :