Note on the congruence of Ankeny-Artin-Chowla type modulo p²
Acta Arithmetica, Tome 85 (1998) no. 4, pp. 377-388
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The results of [2] on the congruence of Ankeny-Artin-Chowla type modulo p² for real subfields of $ℚ(ζ_p)$ of a prime degree l is simplified. This is done on the basis of a congruence for the Gauss period (Theorem 1). The results are applied for the quadratic field ℚ(√p), p ≡ 5 (mod 8) (Corollary 1).
@article{10_4064_aa_85_4_377_388,
author = {Stanislav Jakubec},
title = {Note on the congruence of {Ankeny-Artin-Chowla} type modulo p{\texttwosuperior}},
journal = {Acta Arithmetica},
pages = {377--388},
year = {1998},
volume = {85},
number = {4},
doi = {10.4064/aa-85-4-377-388},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-85-4-377-388/}
}
TY - JOUR AU - Stanislav Jakubec TI - Note on the congruence of Ankeny-Artin-Chowla type modulo p² JO - Acta Arithmetica PY - 1998 SP - 377 EP - 388 VL - 85 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-85-4-377-388/ DO - 10.4064/aa-85-4-377-388 LA - en ID - 10_4064_aa_85_4_377_388 ER -
Stanislav Jakubec. Note on the congruence of Ankeny-Artin-Chowla type modulo p². Acta Arithmetica, Tome 85 (1998) no. 4, pp. 377-388. doi: 10.4064/aa-85-4-377-388
Cité par Sources :