On strong uniform distribution, II. The infinite-dimensional case
Acta Arithmetica, Tome 84 (1998) no. 3, pp. 279-290
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We construct infinite-dimensional chains that are L¹ good for almost sure convergence, which settles a question raised in this journal [N]. We give some conditions for a coprime generated chain to be bad for L² or $L^∞$, using the entropy method. It follows that such a chain with positive lower density is bad for $L^∞$. There also exist such bad chains with zero density.
Keywords:
dimension, chains, almost sure convergence, universally good, density
Affiliations des auteurs :
Y. Lacroix 1
@article{10_4064_aa_84_3_279_290,
author = {Y. Lacroix},
title = {On strong uniform distribution, {II.} {The} infinite-dimensional case},
journal = {Acta Arithmetica},
pages = {279--290},
year = {1998},
volume = {84},
number = {3},
doi = {10.4064/aa-84-3-279-290},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-84-3-279-290/}
}
Y. Lacroix. On strong uniform distribution, II. The infinite-dimensional case. Acta Arithmetica, Tome 84 (1998) no. 3, pp. 279-290. doi: 10.4064/aa-84-3-279-290
Cité par Sources :