Arithmetic of the modular function $j_{1,4}$
Acta Arithmetica, Tome 84 (1998) no. 2, pp. 129-143
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We find a generator $j_{1,4}$ of the function field on the modular curve X₁(4) by means of classical theta functions θ₂ and θ₃, and estimate the normalized generator $N(j_{1,4})$ which becomes the Thompson series of type 4C. With these modular functions we investigate some number theoretic properties.
@article{10_4064_aa_84_2_129_143,
author = {Chang Kim and Ja Koo},
title = {Arithmetic of the modular function $j_{1,4}$},
journal = {Acta Arithmetica},
pages = {129--143},
publisher = {mathdoc},
volume = {84},
number = {2},
year = {1998},
doi = {10.4064/aa-84-2-129-143},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-84-2-129-143/}
}
TY - JOUR
AU - Chang Kim
AU - Ja Koo
TI - Arithmetic of the modular function $j_{1,4}$
JO - Acta Arithmetica
PY - 1998
SP - 129
EP - 143
VL - 84
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-84-2-129-143/
DO - 10.4064/aa-84-2-129-143
LA - en
ID - 10_4064_aa_84_2_129_143
ER -
Chang Kim; Ja Koo. Arithmetic of the modular function $j_{1,4}$. Acta Arithmetica, Tome 84 (1998) no. 2, pp. 129-143. doi: 10.4064/aa-84-2-129-143
Cité par Sources :