On the structure of sets with small doubling property on the plane (I)
Acta Arithmetica, Tome 83 (1998) no. 2, pp. 127-141
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let K be a finite set of lattice points in a plane. We prove that if |K| is sufficiently large and |K+K| (4 - 2/s)|K| - (2s-1), then there exist s - 1 parallel lines which cover K. We also obtain some more precise structure theorems for the cases s = 3 and s = 4.
@article{10_4064_aa_83_2_127_141,
author = {Yonutz Stanchescu},
title = {On the structure of sets with small doubling property on the plane {(I)}},
journal = {Acta Arithmetica},
pages = {127--141},
publisher = {mathdoc},
volume = {83},
number = {2},
year = {1998},
doi = {10.4064/aa-83-2-127-141},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-83-2-127-141/}
}
TY - JOUR AU - Yonutz Stanchescu TI - On the structure of sets with small doubling property on the plane (I) JO - Acta Arithmetica PY - 1998 SP - 127 EP - 141 VL - 83 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-83-2-127-141/ DO - 10.4064/aa-83-2-127-141 LA - en ID - 10_4064_aa_83_2_127_141 ER -
Yonutz Stanchescu. On the structure of sets with small doubling property on the plane (I). Acta Arithmetica, Tome 83 (1998) no. 2, pp. 127-141. doi: 10.4064/aa-83-2-127-141
Cité par Sources :