Arithmetical aspects of certain functional equations
Acta Arithmetica, Tome 82 (1997) no. 3, pp. 257-277
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The classical system of functional equations $ 1/n ∑_{ν=0}^{n-1} F((x+ν)/n) = n^{-s} F(x)$ (n ∈ ℕ) with s ∈ ℂ, investigated for instance by Artin (1931), Yoder (1975), Kubert (1979), and Milnor (1983), is extended to $ 1/n ∑_{ν=0}^{n-1} F((x+ν)/n) = ∑_{d=1}^∞ λ_n(d)F(dx)$ (n ∈ ℕ) with complex valued sequences $λ_n$. This leads to new results on the periodic integrable and the aperiodic continuous solutions F:ℝ₊ → ℂ interrelating the theory of functional equations and the theory of arithmetic functions.
@article{10_4064_aa_82_3_257_277,
author = {Lutz Lucht},
title = {Arithmetical aspects of certain functional equations},
journal = {Acta Arithmetica},
pages = {257--277},
publisher = {mathdoc},
volume = {82},
number = {3},
year = {1997},
doi = {10.4064/aa-82-3-257-277},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-82-3-257-277/}
}
Lutz Lucht. Arithmetical aspects of certain functional equations. Acta Arithmetica, Tome 82 (1997) no. 3, pp. 257-277. doi: 10.4064/aa-82-3-257-277
Cité par Sources :