On the equation $a^p + 2^α b^p + c^p = 0$
Acta Arithmetica, Tome 79 (1997) no. 1, pp. 7-16.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We discuss the equation $a^p + 2^α b^p + c^p = 0$ in which a, b, and c are non-zero relatively prime integers, p is an odd prime number, and α is a positive integer. The technique used to prove Fermat's Last Theorem shows that the equation has no solutions with α 1 or b even. When α=1 and b is odd, there are the two trivial solutions (±1, ∓ 1, ±1). In 1952, Dénes conjectured that these are the only ones. Using methods of Darmon, we prove this conjecture for p≡ 1 mod 4.
DOI : 10.4064/aa-79-1-7-16

Kenneth Ribet 1

1
@article{10_4064_aa_79_1_7_16,
     author = {Kenneth Ribet},
     title = {On the equation $a^p + 2^\ensuremath{\alpha} b^p + c^p = 0$},
     journal = {Acta Arithmetica},
     pages = {7--16},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {1997},
     doi = {10.4064/aa-79-1-7-16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-79-1-7-16/}
}
TY  - JOUR
AU  - Kenneth Ribet
TI  - On the equation $a^p + 2^α b^p + c^p = 0$
JO  - Acta Arithmetica
PY  - 1997
SP  - 7
EP  - 16
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-79-1-7-16/
DO  - 10.4064/aa-79-1-7-16
LA  - en
ID  - 10_4064_aa_79_1_7_16
ER  - 
%0 Journal Article
%A Kenneth Ribet
%T On the equation $a^p + 2^α b^p + c^p = 0$
%J Acta Arithmetica
%D 1997
%P 7-16
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-79-1-7-16/
%R 10.4064/aa-79-1-7-16
%G en
%F 10_4064_aa_79_1_7_16
Kenneth Ribet. On the equation $a^p + 2^α b^p + c^p = 0$. Acta Arithmetica, Tome 79 (1997) no. 1, pp. 7-16. doi : 10.4064/aa-79-1-7-16. http://geodesic.mathdoc.fr/articles/10.4064/aa-79-1-7-16/

Cité par Sources :