Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa_78_1_11_18, author = {Maohua Le}, title = {A note on the number of solutions of the generalized {Ramanujan-Nagell} equation $x{\texttwosuperior}-D = k^n$}, journal = {Acta Arithmetica}, pages = {11--18}, publisher = {mathdoc}, volume = {78}, number = {1}, year = {1996}, doi = {10.4064/aa-78-1-11-18}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-78-1-11-18/} }
TY - JOUR AU - Maohua Le TI - A note on the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = k^n$ JO - Acta Arithmetica PY - 1996 SP - 11 EP - 18 VL - 78 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-78-1-11-18/ DO - 10.4064/aa-78-1-11-18 LA - en ID - 10_4064_aa_78_1_11_18 ER -
%0 Journal Article %A Maohua Le %T A note on the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = k^n$ %J Acta Arithmetica %D 1996 %P 11-18 %V 78 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa-78-1-11-18/ %R 10.4064/aa-78-1-11-18 %G en %F 10_4064_aa_78_1_11_18
Maohua Le. A note on the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = k^n$. Acta Arithmetica, Tome 78 (1996) no. 1, pp. 11-18. doi : 10.4064/aa-78-1-11-18. http://geodesic.mathdoc.fr/articles/10.4064/aa-78-1-11-18/
Cité par Sources :