A note on the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = k^n$
Acta Arithmetica, Tome 78 (1996) no. 1, pp. 11-18
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa_78_1_11_18,
author = {Maohua Le},
title = {A note on the number of solutions of the generalized {Ramanujan-Nagell} equation $x{\texttwosuperior}-D = k^n$},
journal = {Acta Arithmetica},
pages = {11--18},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {1996},
doi = {10.4064/aa-78-1-11-18},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-78-1-11-18/}
}
TY - JOUR AU - Maohua Le TI - A note on the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = k^n$ JO - Acta Arithmetica PY - 1996 SP - 11 EP - 18 VL - 78 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-78-1-11-18/ DO - 10.4064/aa-78-1-11-18 LA - en ID - 10_4064_aa_78_1_11_18 ER -
%0 Journal Article %A Maohua Le %T A note on the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = k^n$ %J Acta Arithmetica %D 1996 %P 11-18 %V 78 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa-78-1-11-18/ %R 10.4064/aa-78-1-11-18 %G en %F 10_4064_aa_78_1_11_18
Maohua Le. A note on the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = k^n$. Acta Arithmetica, Tome 78 (1996) no. 1, pp. 11-18. doi: 10.4064/aa-78-1-11-18
Cité par Sources :