A note on the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = k^n$
Acta Arithmetica, Tome 78 (1996) no. 1, pp. 11-18
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

@article{10_4064_aa_78_1_11_18,
     author = {Maohua Le},
     title = {A note on the number of solutions of the generalized {Ramanujan-Nagell} equation $x{\texttwosuperior}-D = k^n$},
     journal = {Acta Arithmetica},
     pages = {11--18},
     year = {1996},
     volume = {78},
     number = {1},
     doi = {10.4064/aa-78-1-11-18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-78-1-11-18/}
}
TY  - JOUR
AU  - Maohua Le
TI  - A note on the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = k^n$
JO  - Acta Arithmetica
PY  - 1996
SP  - 11
EP  - 18
VL  - 78
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-78-1-11-18/
DO  - 10.4064/aa-78-1-11-18
LA  - en
ID  - 10_4064_aa_78_1_11_18
ER  - 
%0 Journal Article
%A Maohua Le
%T A note on the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = k^n$
%J Acta Arithmetica
%D 1996
%P 11-18
%V 78
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-78-1-11-18/
%R 10.4064/aa-78-1-11-18
%G en
%F 10_4064_aa_78_1_11_18
Maohua Le. A note on the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = k^n$. Acta Arithmetica, Tome 78 (1996) no. 1, pp. 11-18. doi: 10.4064/aa-78-1-11-18

Cité par Sources :