The 4-rank of $K₂O_F$ for real quadratic fields F
Acta Arithmetica, Tome 72 (1995) no. 4, pp. 323-333.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

1. Introduction. Let F be a number field, and let $O_F$ be the ring of its integers. Several formulas for the 4-rank of $K₂O_F$ are known (see [7], [5], etc.). If √{-1) ∉ F, then such formulas are related to S-ideal class groups of F and F(√(-1)), and the numbers of dyadic places in F and F(√(-1)), where S is the set of infinite dyadic places of F. In [11], the author proposes a method which can be applied to determine the 4-rank of $K₂O_F$ for real quadratic fields F with 2 ∉ NF. The author also lists many real quadratic fields with the 2-Sylow subgroups of $K₂O_F$ being isomorphic to ℤ/2ℤ ⊕ ℤ/2ℤ ⊕ ℤ/4ℤ. In [12], the author gives a 4-rank $K₂O_F$ formula for imaginary quadratic fields F. By the formula, it is enough to compute some Legendre symbols when one wants to know 4-rank $K₂O_F$ for a given imaginary quadratic field F. In the present paper, we give a similar formula for real quadratic fields F. Then we give 4-rank $K₂O_F$ tables for real quadratic fields F = ℚ√d whose discriminants have at most three odd prime divisors.
DOI : 10.4064/aa-72-4-323-333

Hourong Qin 1

1
@article{10_4064_aa_72_4_323_333,
     author = {Hourong Qin},
     title = {The 4-rank of $K₂O_F$ for real quadratic fields {F}},
     journal = {Acta Arithmetica},
     pages = {323--333},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {1995},
     doi = {10.4064/aa-72-4-323-333},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-72-4-323-333/}
}
TY  - JOUR
AU  - Hourong Qin
TI  - The 4-rank of $K₂O_F$ for real quadratic fields F
JO  - Acta Arithmetica
PY  - 1995
SP  - 323
EP  - 333
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-72-4-323-333/
DO  - 10.4064/aa-72-4-323-333
LA  - en
ID  - 10_4064_aa_72_4_323_333
ER  - 
%0 Journal Article
%A Hourong Qin
%T The 4-rank of $K₂O_F$ for real quadratic fields F
%J Acta Arithmetica
%D 1995
%P 323-333
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-72-4-323-333/
%R 10.4064/aa-72-4-323-333
%G en
%F 10_4064_aa_72_4_323_333
Hourong Qin. The 4-rank of $K₂O_F$ for real quadratic fields F. Acta Arithmetica, Tome 72 (1995) no. 4, pp. 323-333. doi : 10.4064/aa-72-4-323-333. http://geodesic.mathdoc.fr/articles/10.4064/aa-72-4-323-333/

Cité par Sources :