On arithmetic progressions having only few different prime factors in comparison with their length
Acta Arithmetica, Tome 70 (1995) no. 4, pp. 295-312.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa-70-4-295-312

Pieter Moree 1

1
@article{10_4064_aa_70_4_295_312,
     author = {Pieter Moree},
     title = {On arithmetic progressions having only few different prime factors in comparison with their length},
     journal = {Acta Arithmetica},
     pages = {295--312},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {1995},
     doi = {10.4064/aa-70-4-295-312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-70-4-295-312/}
}
TY  - JOUR
AU  - Pieter Moree
TI  - On arithmetic progressions having only few different prime factors in comparison with their length
JO  - Acta Arithmetica
PY  - 1995
SP  - 295
EP  - 312
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-70-4-295-312/
DO  - 10.4064/aa-70-4-295-312
LA  - en
ID  - 10_4064_aa_70_4_295_312
ER  - 
%0 Journal Article
%A Pieter Moree
%T On arithmetic progressions having only few different prime factors in comparison with their length
%J Acta Arithmetica
%D 1995
%P 295-312
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-70-4-295-312/
%R 10.4064/aa-70-4-295-312
%G en
%F 10_4064_aa_70_4_295_312
Pieter Moree. On arithmetic progressions having only few different prime factors in comparison with their length. Acta Arithmetica, Tome 70 (1995) no. 4, pp. 295-312. doi : 10.4064/aa-70-4-295-312. http://geodesic.mathdoc.fr/articles/10.4064/aa-70-4-295-312/

Cité par Sources :