The Iwasawa λ-invariants of ℤₚ-extensions of real quadratic fields
Acta Arithmetica, Tome 69 (1995) no. 3, pp. 277-292.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

1. Introduction. Let k be a totally real number field. Let p be a fixed prime number and ℤₚ the ring of all p-adic integers. We denote by λ=λₚ(k), μ=μₚ(k) and ν=νₚ(k) the Iwasawa invariants of the cyclotomic ℤₚ-extension $k_∞$ of k for p (cf. [10]). Then Greenberg's conjecture states that both λₚ(k) and μₚ(k) always vanish (cf. [8]). In other words, the order of the p-primary part of the ideal class group of kₙ remains bounded as n tends to infinity, where kₙ is the nth layer of $k_∞/k$. We know by the Ferrero-Washington theorem (cf. [2], [15]) that μₚ(k) always vanishes when k is an abelian (not necessarily totally real) number field. However, the conjecture remains unsolved up to now except for some special cases (cf. [1], [3], [5]-[8], [13]). This paper is a continuation of our previous papers [3], [5]-[7] and [12], that is to say, we investigate Greenberg's conjecture when k is a real quadratic field and p is an odd prime number which splits in k. The purpose of this paper is to extend our previous results, and to give basic numerical data of k=ℚ(√m) for 0 ≤ m ≤ 10000 and p=3. On the basis of these data, we can verify Greenberg's conjecture for most of these k's.
DOI : 10.4064/aa-69-3-277-292

Takashi Fukuda 1 ; Hisao Taya 1

1
@article{10_4064_aa_69_3_277_292,
     author = {Takashi Fukuda and Hisao Taya},
     title = {The {Iwasawa} \ensuremath{\lambda}-invariants of {\ensuremath{\mathbb{Z}}ₚ-extensions} of real quadratic fields},
     journal = {Acta Arithmetica},
     pages = {277--292},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {1995},
     doi = {10.4064/aa-69-3-277-292},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-69-3-277-292/}
}
TY  - JOUR
AU  - Takashi Fukuda
AU  - Hisao Taya
TI  - The Iwasawa λ-invariants of ℤₚ-extensions of real quadratic fields
JO  - Acta Arithmetica
PY  - 1995
SP  - 277
EP  - 292
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-69-3-277-292/
DO  - 10.4064/aa-69-3-277-292
LA  - en
ID  - 10_4064_aa_69_3_277_292
ER  - 
%0 Journal Article
%A Takashi Fukuda
%A Hisao Taya
%T The Iwasawa λ-invariants of ℤₚ-extensions of real quadratic fields
%J Acta Arithmetica
%D 1995
%P 277-292
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-69-3-277-292/
%R 10.4064/aa-69-3-277-292
%G en
%F 10_4064_aa_69_3_277_292
Takashi Fukuda; Hisao Taya. The Iwasawa λ-invariants of ℤₚ-extensions of real quadratic fields. Acta Arithmetica, Tome 69 (1995) no. 3, pp. 277-292. doi : 10.4064/aa-69-3-277-292. http://geodesic.mathdoc.fr/articles/10.4064/aa-69-3-277-292/

Cité par Sources :