The Iwasawa λ-invariants of ℤₚ-extensions of real quadratic fields
Acta Arithmetica, Tome 69 (1995) no. 3, pp. 277-292
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
1. Introduction. Let k be a totally real number field. Let p be a fixed prime number and ℤₚ the ring of all p-adic integers. We denote by λ=λₚ(k), μ=μₚ(k) and ν=νₚ(k) the Iwasawa invariants of the cyclotomic ℤₚ-extension $k_∞$ of k for p (cf. [10]). Then Greenberg's conjecture states that both λₚ(k) and μₚ(k) always vanish (cf. [8]). In other words, the order of the p-primary part of the ideal class group of kₙ remains bounded as n tends to infinity, where kₙ is the nth layer of $k_∞/k$. We know by the Ferrero-Washington theorem (cf. [2], [15]) that μₚ(k) always vanishes when k is an abelian (not necessarily totally real) number field. However, the conjecture remains unsolved up to now except for some special cases (cf. [1], [3], [5]-[8], [13]). This paper is a continuation of our previous papers [3], [5]-[7] and [12], that is to say, we investigate Greenberg's conjecture when k is a real quadratic field and p is an odd prime number which splits in k. The purpose of this paper is to extend our previous results, and to give basic numerical data of k=ℚ(√m) for 0 ≤ m ≤ 10000 and p=3. On the basis of these data, we can verify Greenberg's conjecture for most of these k's.
Affiliations des auteurs :
Takashi Fukuda 1 ; Hisao Taya 1
@article{10_4064_aa_69_3_277_292,
author = {Takashi Fukuda and Hisao Taya},
title = {The {Iwasawa} \ensuremath{\lambda}-invariants of {\ensuremath{\mathbb{Z}}ₚ-extensions} of real quadratic fields},
journal = {Acta Arithmetica},
pages = {277--292},
publisher = {mathdoc},
volume = {69},
number = {3},
year = {1995},
doi = {10.4064/aa-69-3-277-292},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-69-3-277-292/}
}
TY - JOUR AU - Takashi Fukuda AU - Hisao Taya TI - The Iwasawa λ-invariants of ℤₚ-extensions of real quadratic fields JO - Acta Arithmetica PY - 1995 SP - 277 EP - 292 VL - 69 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-69-3-277-292/ DO - 10.4064/aa-69-3-277-292 LA - en ID - 10_4064_aa_69_3_277_292 ER -
%0 Journal Article %A Takashi Fukuda %A Hisao Taya %T The Iwasawa λ-invariants of ℤₚ-extensions of real quadratic fields %J Acta Arithmetica %D 1995 %P 277-292 %V 69 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa-69-3-277-292/ %R 10.4064/aa-69-3-277-292 %G en %F 10_4064_aa_69_3_277_292
Takashi Fukuda; Hisao Taya. The Iwasawa λ-invariants of ℤₚ-extensions of real quadratic fields. Acta Arithmetica, Tome 69 (1995) no. 3, pp. 277-292. doi: 10.4064/aa-69-3-277-292
Cité par Sources :