Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa_60_2_149_167, author = {Maohua Le}, title = {On the number of solutions of the generalized {Ramanujan-Nagell} equation $x{\texttwosuperior}-D = 2^{n+2}$}, journal = {Acta Arithmetica}, pages = {149--167}, publisher = {mathdoc}, volume = {60}, number = {2}, year = {1991}, doi = {10.4064/aa-60-2-149-167}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-60-2-149-167/} }
TY - JOUR AU - Maohua Le TI - On the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = 2^{n+2}$ JO - Acta Arithmetica PY - 1991 SP - 149 EP - 167 VL - 60 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-60-2-149-167/ DO - 10.4064/aa-60-2-149-167 LA - en ID - 10_4064_aa_60_2_149_167 ER -
%0 Journal Article %A Maohua Le %T On the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = 2^{n+2}$ %J Acta Arithmetica %D 1991 %P 149-167 %V 60 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa-60-2-149-167/ %R 10.4064/aa-60-2-149-167 %G en %F 10_4064_aa_60_2_149_167
Maohua Le. On the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = 2^{n+2}$. Acta Arithmetica, Tome 60 (1991) no. 2, pp. 149-167. doi : 10.4064/aa-60-2-149-167. http://geodesic.mathdoc.fr/articles/10.4064/aa-60-2-149-167/
Cité par Sources :