On the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = 2^{n+2}$
Acta Arithmetica, Tome 60 (1991) no. 2, pp. 149-167.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa-60-2-149-167

Maohua Le 1

1
@article{10_4064_aa_60_2_149_167,
     author = {Maohua Le},
     title = {On the number of solutions of the generalized {Ramanujan-Nagell} equation $x{\texttwosuperior}-D = 2^{n+2}$},
     journal = {Acta Arithmetica},
     pages = {149--167},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1991},
     doi = {10.4064/aa-60-2-149-167},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-60-2-149-167/}
}
TY  - JOUR
AU  - Maohua Le
TI  - On the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = 2^{n+2}$
JO  - Acta Arithmetica
PY  - 1991
SP  - 149
EP  - 167
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-60-2-149-167/
DO  - 10.4064/aa-60-2-149-167
LA  - en
ID  - 10_4064_aa_60_2_149_167
ER  - 
%0 Journal Article
%A Maohua Le
%T On the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = 2^{n+2}$
%J Acta Arithmetica
%D 1991
%P 149-167
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-60-2-149-167/
%R 10.4064/aa-60-2-149-167
%G en
%F 10_4064_aa_60_2_149_167
Maohua Le. On the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = 2^{n+2}$. Acta Arithmetica, Tome 60 (1991) no. 2, pp. 149-167. doi : 10.4064/aa-60-2-149-167. http://geodesic.mathdoc.fr/articles/10.4064/aa-60-2-149-167/

Cité par Sources :