On the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = 2^{n+2}$
Acta Arithmetica, Tome 60 (1991) no. 2, pp. 149-167
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa_60_2_149_167,
author = {Maohua Le},
title = {On the number of solutions of the generalized {Ramanujan-Nagell} equation $x{\texttwosuperior}-D = 2^{n+2}$},
journal = {Acta Arithmetica},
pages = {149--167},
year = {1991},
volume = {60},
number = {2},
doi = {10.4064/aa-60-2-149-167},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-60-2-149-167/}
}
TY - JOUR
AU - Maohua Le
TI - On the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = 2^{n+2}$
JO - Acta Arithmetica
PY - 1991
SP - 149
EP - 167
VL - 60
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-60-2-149-167/
DO - 10.4064/aa-60-2-149-167
LA - en
ID - 10_4064_aa_60_2_149_167
ER -
Maohua Le. On the number of solutions of the generalized Ramanujan-Nagell equation $x²-D = 2^{n+2}$. Acta Arithmetica, Tome 60 (1991) no. 2, pp. 149-167. doi: 10.4064/aa-60-2-149-167
Cité par Sources :