Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa_41_2_151_161, author = {J. W\'ojcik}, title = {On the congruence $f(x^k) \ensuremath{\equiv} 0 mod q$, where q is a prime and f is a k-normal polynomial}, journal = {Acta Arithmetica}, pages = {151--161}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {1982}, doi = {10.4064/aa-41-2-151-161}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-41-2-151-161/} }
TY - JOUR AU - J. Wójcik TI - On the congruence $f(x^k) ≡ 0 mod q$, where q is a prime and f is a k-normal polynomial JO - Acta Arithmetica PY - 1982 SP - 151 EP - 161 VL - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-41-2-151-161/ DO - 10.4064/aa-41-2-151-161 LA - en ID - 10_4064_aa_41_2_151_161 ER -
%0 Journal Article %A J. Wójcik %T On the congruence $f(x^k) ≡ 0 mod q$, where q is a prime and f is a k-normal polynomial %J Acta Arithmetica %D 1982 %P 151-161 %V 41 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa-41-2-151-161/ %R 10.4064/aa-41-2-151-161 %G en %F 10_4064_aa_41_2_151_161
J. Wójcik. On the congruence $f(x^k) ≡ 0 mod q$, where q is a prime and f is a k-normal polynomial. Acta Arithmetica, Tome 41 (1982) no. 2, pp. 151-161. doi : 10.4064/aa-41-2-151-161. http://geodesic.mathdoc.fr/articles/10.4064/aa-41-2-151-161/
Cité par Sources :