On the congruence $f(x^k) ≡ 0 mod q$, where q is a prime and f is a k-normal polynomial
Acta Arithmetica, Tome 41 (1982) no. 2, pp. 151-161.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa-41-2-151-161

J. Wójcik 1

1
@article{10_4064_aa_41_2_151_161,
     author = {J. W\'ojcik},
     title = {On the congruence $f(x^k) \ensuremath{\equiv} 0 mod q$, where q is a prime and f is a k-normal polynomial},
     journal = {Acta Arithmetica},
     pages = {151--161},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {1982},
     doi = {10.4064/aa-41-2-151-161},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-41-2-151-161/}
}
TY  - JOUR
AU  - J. Wójcik
TI  - On the congruence $f(x^k) ≡ 0 mod q$, where q is a prime and f is a k-normal polynomial
JO  - Acta Arithmetica
PY  - 1982
SP  - 151
EP  - 161
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-41-2-151-161/
DO  - 10.4064/aa-41-2-151-161
LA  - en
ID  - 10_4064_aa_41_2_151_161
ER  - 
%0 Journal Article
%A J. Wójcik
%T On the congruence $f(x^k) ≡ 0 mod q$, where q is a prime and f is a k-normal polynomial
%J Acta Arithmetica
%D 1982
%P 151-161
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-41-2-151-161/
%R 10.4064/aa-41-2-151-161
%G en
%F 10_4064_aa_41_2_151_161
J. Wójcik. On the congruence $f(x^k) ≡ 0 mod q$, where q is a prime and f is a k-normal polynomial. Acta Arithmetica, Tome 41 (1982) no. 2, pp. 151-161. doi : 10.4064/aa-41-2-151-161. http://geodesic.mathdoc.fr/articles/10.4064/aa-41-2-151-161/

Cité par Sources :