The number of different lengths of irreducible factorization of a natural number in an algebraic number field
Acta Arithmetica, Tome 36 (1980) no. 1, pp. 59-86.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa-36-1-59-86

S. Allen 1 ; P. Pleasants 1

1
@article{10_4064_aa_36_1_59_86,
     author = {S. Allen and P. Pleasants},
     title = {The number of different lengths of irreducible factorization of a natural number in an algebraic number field},
     journal = {Acta Arithmetica},
     pages = {59--86},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {1980},
     doi = {10.4064/aa-36-1-59-86},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-36-1-59-86/}
}
TY  - JOUR
AU  - S. Allen
AU  - P. Pleasants
TI  - The number of different lengths of irreducible factorization of a natural number in an algebraic number field
JO  - Acta Arithmetica
PY  - 1980
SP  - 59
EP  - 86
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-36-1-59-86/
DO  - 10.4064/aa-36-1-59-86
LA  - en
ID  - 10_4064_aa_36_1_59_86
ER  - 
%0 Journal Article
%A S. Allen
%A P. Pleasants
%T The number of different lengths of irreducible factorization of a natural number in an algebraic number field
%J Acta Arithmetica
%D 1980
%P 59-86
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-36-1-59-86/
%R 10.4064/aa-36-1-59-86
%G en
%F 10_4064_aa_36_1_59_86
S. Allen; P. Pleasants. The number of different lengths of irreducible factorization of a natural number in an algebraic number field. Acta Arithmetica, Tome 36 (1980) no. 1, pp. 59-86. doi : 10.4064/aa-36-1-59-86. http://geodesic.mathdoc.fr/articles/10.4064/aa-36-1-59-86/

Cité par Sources :