The diophantine equations $(x^2 - c)^2 = (t^2 ± 2) y^2 + 1$
Acta Arithmetica, Tome 30 (1976) no. 3, pp. 253-255.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa-30-3-253-255

J. Cohn 1

1
@article{10_4064_aa_30_3_253_255,
     author = {J. Cohn},
     title = {The diophantine equations $(x^2 - c)^2 = (t^2 \ensuremath{\pm} 2) y^2 + 1$},
     journal = {Acta Arithmetica},
     pages = {253--255},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {1976},
     doi = {10.4064/aa-30-3-253-255},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-30-3-253-255/}
}
TY  - JOUR
AU  - J. Cohn
TI  - The diophantine equations $(x^2 - c)^2 = (t^2 ± 2) y^2 + 1$
JO  - Acta Arithmetica
PY  - 1976
SP  - 253
EP  - 255
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-30-3-253-255/
DO  - 10.4064/aa-30-3-253-255
LA  - fr
ID  - 10_4064_aa_30_3_253_255
ER  - 
%0 Journal Article
%A J. Cohn
%T The diophantine equations $(x^2 - c)^2 = (t^2 ± 2) y^2 + 1$
%J Acta Arithmetica
%D 1976
%P 253-255
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-30-3-253-255/
%R 10.4064/aa-30-3-253-255
%G fr
%F 10_4064_aa_30_3_253_255
J. Cohn. The diophantine equations $(x^2 - c)^2 = (t^2 ± 2) y^2 + 1$. Acta Arithmetica, Tome 30 (1976) no. 3, pp. 253-255. doi : 10.4064/aa-30-3-253-255. http://geodesic.mathdoc.fr/articles/10.4064/aa-30-3-253-255/

Cité par Sources :