Absolutely continuous distribution functions of additive functions $f(p) = (log p)^{-a}, a>0$
Acta Arithmetica, Tome 26 (1974) no. 4, pp. 401-403.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa-26-4-401-403

G. Jogesh Babu 1

1
@article{10_4064_aa_26_4_401_403,
     author = {G. Jogesh Babu},
     title = {Absolutely continuous distribution functions of additive functions $f(p) = (log p)^{-a}, a>0$},
     journal = {Acta Arithmetica},
     pages = {401--403},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {1974},
     doi = {10.4064/aa-26-4-401-403},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-26-4-401-403/}
}
TY  - JOUR
AU  - G. Jogesh Babu
TI  - Absolutely continuous distribution functions of additive functions $f(p) = (log p)^{-a}, a>0$
JO  - Acta Arithmetica
PY  - 1974
SP  - 401
EP  - 403
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-26-4-401-403/
DO  - 10.4064/aa-26-4-401-403
LA  - en
ID  - 10_4064_aa_26_4_401_403
ER  - 
%0 Journal Article
%A G. Jogesh Babu
%T Absolutely continuous distribution functions of additive functions $f(p) = (log p)^{-a}, a>0$
%J Acta Arithmetica
%D 1974
%P 401-403
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-26-4-401-403/
%R 10.4064/aa-26-4-401-403
%G en
%F 10_4064_aa_26_4_401_403
G. Jogesh Babu. Absolutely continuous distribution functions of additive functions $f(p) = (log p)^{-a}, a>0$. Acta Arithmetica, Tome 26 (1974) no. 4, pp. 401-403. doi : 10.4064/aa-26-4-401-403. http://geodesic.mathdoc.fr/articles/10.4064/aa-26-4-401-403/

Cité par Sources :