The transcendence of linear forms in $ω_1$, $ω_2$, $η_1$, $η_2$, 2πi, log γ
Acta Arithmetica, Tome 26 (1974) no. 2, pp. 197-206.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa-26-2-197-206

Richard Franklin 1

1
@article{10_4064_aa_26_2_197_206,
     author = {Richard Franklin},
     title = {The transcendence of linear forms in $\ensuremath{\omega}_1$, $\ensuremath{\omega}_2$, $\ensuremath{\eta}_1$, $\ensuremath{\eta}_2$, 2\ensuremath{\pi}i, log \ensuremath{\gamma}},
     journal = {Acta Arithmetica},
     pages = {197--206},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1974},
     doi = {10.4064/aa-26-2-197-206},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-26-2-197-206/}
}
TY  - JOUR
AU  - Richard Franklin
TI  - The transcendence of linear forms in $ω_1$, $ω_2$, $η_1$, $η_2$, 2πi, log γ
JO  - Acta Arithmetica
PY  - 1974
SP  - 197
EP  - 206
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-26-2-197-206/
DO  - 10.4064/aa-26-2-197-206
LA  - en
ID  - 10_4064_aa_26_2_197_206
ER  - 
%0 Journal Article
%A Richard Franklin
%T The transcendence of linear forms in $ω_1$, $ω_2$, $η_1$, $η_2$, 2πi, log γ
%J Acta Arithmetica
%D 1974
%P 197-206
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-26-2-197-206/
%R 10.4064/aa-26-2-197-206
%G en
%F 10_4064_aa_26_2_197_206
Richard Franklin. The transcendence of linear forms in $ω_1$, $ω_2$, $η_1$, $η_2$, 2πi, log γ. Acta Arithmetica, Tome 26 (1974) no. 2, pp. 197-206. doi : 10.4064/aa-26-2-197-206. http://geodesic.mathdoc.fr/articles/10.4064/aa-26-2-197-206/

Cité par Sources :