Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa_26_2_197_206, author = {Richard Franklin}, title = {The transcendence of linear forms in $\ensuremath{\omega}_1$, $\ensuremath{\omega}_2$, $\ensuremath{\eta}_1$, $\ensuremath{\eta}_2$, 2\ensuremath{\pi}i, log \ensuremath{\gamma}}, journal = {Acta Arithmetica}, pages = {197--206}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {1974}, doi = {10.4064/aa-26-2-197-206}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-26-2-197-206/} }
TY - JOUR AU - Richard Franklin TI - The transcendence of linear forms in $ω_1$, $ω_2$, $η_1$, $η_2$, 2πi, log γ JO - Acta Arithmetica PY - 1974 SP - 197 EP - 206 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-26-2-197-206/ DO - 10.4064/aa-26-2-197-206 LA - en ID - 10_4064_aa_26_2_197_206 ER -
%0 Journal Article %A Richard Franklin %T The transcendence of linear forms in $ω_1$, $ω_2$, $η_1$, $η_2$, 2πi, log γ %J Acta Arithmetica %D 1974 %P 197-206 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa-26-2-197-206/ %R 10.4064/aa-26-2-197-206 %G en %F 10_4064_aa_26_2_197_206
Richard Franklin. The transcendence of linear forms in $ω_1$, $ω_2$, $η_1$, $η_2$, 2πi, log γ. Acta Arithmetica, Tome 26 (1974) no. 2, pp. 197-206. doi : 10.4064/aa-26-2-197-206. http://geodesic.mathdoc.fr/articles/10.4064/aa-26-2-197-206/
Cité par Sources :