The transcendence of linear forms in $ω_1$, $ω_2$, $η_1$, $η_2$, 2πi, log γ
Acta Arithmetica, Tome 26 (1974) no. 2, pp. 197-206
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa_26_2_197_206,
author = {Richard Franklin},
title = {The transcendence of linear forms in $\ensuremath{\omega}_1$, $\ensuremath{\omega}_2$, $\ensuremath{\eta}_1$, $\ensuremath{\eta}_2$, 2\ensuremath{\pi}i, log \ensuremath{\gamma}},
journal = {Acta Arithmetica},
pages = {197--206},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {1974},
doi = {10.4064/aa-26-2-197-206},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-26-2-197-206/}
}
TY - JOUR AU - Richard Franklin TI - The transcendence of linear forms in $ω_1$, $ω_2$, $η_1$, $η_2$, 2πi, log γ JO - Acta Arithmetica PY - 1974 SP - 197 EP - 206 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-26-2-197-206/ DO - 10.4064/aa-26-2-197-206 LA - en ID - 10_4064_aa_26_2_197_206 ER -
%0 Journal Article %A Richard Franklin %T The transcendence of linear forms in $ω_1$, $ω_2$, $η_1$, $η_2$, 2πi, log γ %J Acta Arithmetica %D 1974 %P 197-206 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa-26-2-197-206/ %R 10.4064/aa-26-2-197-206 %G en %F 10_4064_aa_26_2_197_206
Richard Franklin. The transcendence of linear forms in $ω_1$, $ω_2$, $η_1$, $η_2$, 2πi, log γ. Acta Arithmetica, Tome 26 (1974) no. 2, pp. 197-206. doi: 10.4064/aa-26-2-197-206
Cité par Sources :