On the congruence $a_1(x_1)^k + ... + a_s(x_s)^k = N(mod p^n)$
Acta Arithmetica, Tome 23 (1973) no. 3, pp. 257-269.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa-23-3-257-269

J. Bovey 1

1
@article{10_4064_aa_23_3_257_269,
     author = {J. Bovey},
     title = {On the congruence $a_1(x_1)^k + ... + a_s(x_s)^k = N(mod p^n)$},
     journal = {Acta Arithmetica},
     pages = {257--269},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1973},
     doi = {10.4064/aa-23-3-257-269},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-23-3-257-269/}
}
TY  - JOUR
AU  - J. Bovey
TI  - On the congruence $a_1(x_1)^k + ... + a_s(x_s)^k = N(mod p^n)$
JO  - Acta Arithmetica
PY  - 1973
SP  - 257
EP  - 269
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-23-3-257-269/
DO  - 10.4064/aa-23-3-257-269
LA  - en
ID  - 10_4064_aa_23_3_257_269
ER  - 
%0 Journal Article
%A J. Bovey
%T On the congruence $a_1(x_1)^k + ... + a_s(x_s)^k = N(mod p^n)$
%J Acta Arithmetica
%D 1973
%P 257-269
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-23-3-257-269/
%R 10.4064/aa-23-3-257-269
%G en
%F 10_4064_aa_23_3_257_269
J. Bovey. On the congruence $a_1(x_1)^k + ... + a_s(x_s)^k = N(mod p^n)$. Acta Arithmetica, Tome 23 (1973) no. 3, pp. 257-269. doi : 10.4064/aa-23-3-257-269. http://geodesic.mathdoc.fr/articles/10.4064/aa-23-3-257-269/

Cité par Sources :