Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa_16_4_425_436, author = {J. Coates}, title = {An effective p-adic analogue of a theorem of {Thue} {III.} {The} diophantine equation $y^2 = x^2 + k$}, journal = {Acta Arithmetica}, pages = {425--436}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {1969}, doi = {10.4064/aa-16-4-425-436}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-16-4-425-436/} }
TY - JOUR AU - J. Coates TI - An effective p-adic analogue of a theorem of Thue III. The diophantine equation $y^2 = x^2 + k$ JO - Acta Arithmetica PY - 1969 SP - 425 EP - 436 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-16-4-425-436/ DO - 10.4064/aa-16-4-425-436 LA - en ID - 10_4064_aa_16_4_425_436 ER -
%0 Journal Article %A J. Coates %T An effective p-adic analogue of a theorem of Thue III. The diophantine equation $y^2 = x^2 + k$ %J Acta Arithmetica %D 1969 %P 425-436 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa-16-4-425-436/ %R 10.4064/aa-16-4-425-436 %G en %F 10_4064_aa_16_4_425_436
J. Coates. An effective p-adic analogue of a theorem of Thue III. The diophantine equation $y^2 = x^2 + k$. Acta Arithmetica, Tome 16 (1969) no. 4, pp. 425-436. doi : 10.4064/aa-16-4-425-436. http://geodesic.mathdoc.fr/articles/10.4064/aa-16-4-425-436/
Cité par Sources :