An effective p-adic analogue of a theorem of Thue III. The diophantine equation $y^2 = x^2 + k$
Acta Arithmetica, Tome 16 (1969) no. 4, pp. 425-436.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa-16-4-425-436

J. Coates 1

1
@article{10_4064_aa_16_4_425_436,
     author = {J. Coates},
     title = {An effective p-adic analogue of a theorem of {Thue} {III.} {The} diophantine equation $y^2 = x^2 + k$},
     journal = {Acta Arithmetica},
     pages = {425--436},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1969},
     doi = {10.4064/aa-16-4-425-436},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-16-4-425-436/}
}
TY  - JOUR
AU  - J. Coates
TI  - An effective p-adic analogue of a theorem of Thue III. The diophantine equation $y^2 = x^2 + k$
JO  - Acta Arithmetica
PY  - 1969
SP  - 425
EP  - 436
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-16-4-425-436/
DO  - 10.4064/aa-16-4-425-436
LA  - en
ID  - 10_4064_aa_16_4_425_436
ER  - 
%0 Journal Article
%A J. Coates
%T An effective p-adic analogue of a theorem of Thue III. The diophantine equation $y^2 = x^2 + k$
%J Acta Arithmetica
%D 1969
%P 425-436
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-16-4-425-436/
%R 10.4064/aa-16-4-425-436
%G en
%F 10_4064_aa_16_4_425_436
J. Coates. An effective p-adic analogue of a theorem of Thue III. The diophantine equation $y^2 = x^2 + k$. Acta Arithmetica, Tome 16 (1969) no. 4, pp. 425-436. doi : 10.4064/aa-16-4-425-436. http://geodesic.mathdoc.fr/articles/10.4064/aa-16-4-425-436/

Cité par Sources :