Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_aa_16_4_399_412, author = {J. Coates}, title = {An effective p-adic analogue of a theorem of {Thue} {II.} {The} greatest prime factor of a binary form}, journal = {Acta Arithmetica}, pages = {399--412}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {1969}, doi = {10.4064/aa-16-4-399-412}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-16-4-399-412/} }
TY - JOUR AU - J. Coates TI - An effective p-adic analogue of a theorem of Thue II. The greatest prime factor of a binary form JO - Acta Arithmetica PY - 1969 SP - 399 EP - 412 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa-16-4-399-412/ DO - 10.4064/aa-16-4-399-412 LA - en ID - 10_4064_aa_16_4_399_412 ER -
%0 Journal Article %A J. Coates %T An effective p-adic analogue of a theorem of Thue II. The greatest prime factor of a binary form %J Acta Arithmetica %D 1969 %P 399-412 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa-16-4-399-412/ %R 10.4064/aa-16-4-399-412 %G en %F 10_4064_aa_16_4_399_412
J. Coates. An effective p-adic analogue of a theorem of Thue II. The greatest prime factor of a binary form. Acta Arithmetica, Tome 16 (1969) no. 4, pp. 399-412. doi : 10.4064/aa-16-4-399-412. http://geodesic.mathdoc.fr/articles/10.4064/aa-16-4-399-412/
Cité par Sources :