An effective p-adic analogue of a theorem of Thue
Acta Arithmetica, Tome 15 (1968) no. 3, pp. 279-305.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa-15-3-279-305

J. Coates 1

1
@article{10_4064_aa_15_3_279_305,
     author = {J. Coates},
     title = {An effective p-adic analogue of a theorem of {Thue}},
     journal = {Acta Arithmetica},
     pages = {279--305},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {1968},
     doi = {10.4064/aa-15-3-279-305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa-15-3-279-305/}
}
TY  - JOUR
AU  - J. Coates
TI  - An effective p-adic analogue of a theorem of Thue
JO  - Acta Arithmetica
PY  - 1968
SP  - 279
EP  - 305
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa-15-3-279-305/
DO  - 10.4064/aa-15-3-279-305
LA  - en
ID  - 10_4064_aa_15_3_279_305
ER  - 
%0 Journal Article
%A J. Coates
%T An effective p-adic analogue of a theorem of Thue
%J Acta Arithmetica
%D 1968
%P 279-305
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa-15-3-279-305/
%R 10.4064/aa-15-3-279-305
%G en
%F 10_4064_aa_15_3_279_305
J. Coates. An effective p-adic analogue of a theorem of Thue. Acta Arithmetica, Tome 15 (1968) no. 3, pp. 279-305. doi : 10.4064/aa-15-3-279-305. http://geodesic.mathdoc.fr/articles/10.4064/aa-15-3-279-305/

Cité par Sources :