Technicalities in the calculation of the 3rd post-Newtonian dynamics
Banach Center Publications, Tome 41 (1997) no. 2, pp. 55-63.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Dynamics of a point-particle system interacting gravitationally according to the general theory of relativity can be analyzed within the canonical formalism of Arnowitt, Deser, and Misner. To describe the property of being a point particle one can employ Dirac delta distribution in the energy-momentum tensor of the system. We report some mathematical difficulties which arise in deriving the 3rd post-Newtonian Hamilton's function for such a system. We also offer ways to overcome partially these difficulties.
DOI : 10.4064/-41-2-55-63

Piotr Jaranowski 1

1
@article{10_4064__41_2_55_63,
     author = {Piotr Jaranowski},
     title = {Technicalities in the calculation of the 3rd {post-Newtonian} dynamics},
     journal = {Banach Center Publications},
     pages = {55--63},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {1997},
     doi = {10.4064/-41-2-55-63},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/-41-2-55-63/}
}
TY  - JOUR
AU  - Piotr Jaranowski
TI  - Technicalities in the calculation of the 3rd post-Newtonian dynamics
JO  - Banach Center Publications
PY  - 1997
SP  - 55
EP  - 63
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/-41-2-55-63/
DO  - 10.4064/-41-2-55-63
LA  - en
ID  - 10_4064__41_2_55_63
ER  - 
%0 Journal Article
%A Piotr Jaranowski
%T Technicalities in the calculation of the 3rd post-Newtonian dynamics
%J Banach Center Publications
%D 1997
%P 55-63
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/-41-2-55-63/
%R 10.4064/-41-2-55-63
%G en
%F 10_4064__41_2_55_63
Piotr Jaranowski. Technicalities in the calculation of the 3rd post-Newtonian dynamics. Banach Center Publications, Tome 41 (1997) no. 2, pp. 55-63. doi : 10.4064/-41-2-55-63. http://geodesic.mathdoc.fr/articles/10.4064/-41-2-55-63/

Cité par Sources :