Wavelet transform and binary coalescence detection
Banach Center Publications, Tome 41 (1997) no. 2, pp. 179-208.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a short account of some time-frequency methods which are relevant in the context of gravity waves detection. We focus on the case of wavelet analysis which we believe is particularly appropriate. We show how wavelet transforms can lead to efficient algorithms for detection and parameter estimation of binary coalescence signals. In addition, we give in an appendix some of the ingredients needed for the construction of discrete wavelet decompositions and corresponding fast algorithms.
DOI : 10.4064/-41-2-179-208

Jean-Michel Innocent 1 ; Bruno Torrésani 1

1
@article{10_4064__41_2_179_208,
     author = {Jean-Michel Innocent and Bruno Torr\'esani},
     title = {Wavelet transform and binary coalescence detection},
     journal = {Banach Center Publications},
     pages = {179--208},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {1997},
     doi = {10.4064/-41-2-179-208},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/-41-2-179-208/}
}
TY  - JOUR
AU  - Jean-Michel Innocent
AU  - Bruno Torrésani
TI  - Wavelet transform and binary coalescence detection
JO  - Banach Center Publications
PY  - 1997
SP  - 179
EP  - 208
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/-41-2-179-208/
DO  - 10.4064/-41-2-179-208
LA  - en
ID  - 10_4064__41_2_179_208
ER  - 
%0 Journal Article
%A Jean-Michel Innocent
%A Bruno Torrésani
%T Wavelet transform and binary coalescence detection
%J Banach Center Publications
%D 1997
%P 179-208
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/-41-2-179-208/
%R 10.4064/-41-2-179-208
%G en
%F 10_4064__41_2_179_208
Jean-Michel Innocent; Bruno Torrésani. Wavelet transform and binary coalescence detection. Banach Center Publications, Tome 41 (1997) no. 2, pp. 179-208. doi : 10.4064/-41-2-179-208. http://geodesic.mathdoc.fr/articles/10.4064/-41-2-179-208/

Cité par Sources :