Quasi-local energy-momentum and the Sen geometry of two-surfaces
Banach Center Publications, Tome 41 (1997) no. 1, pp. 205-219.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We review the main ideas of the two dimensional Sen geometry and apply these concepts i. in finding the `most natural' quasi-local energy-momentum, ii. in characterizing the zero energy-momentum and zero mass configurations and iii. in finding the quasi-local radiative modes of general relativity.
DOI : 10.4064/-41-1-205-219

László Szabados 1

1
@article{10_4064__41_1_205_219,
     author = {L\'aszl\'o Szabados},
     title = {Quasi-local energy-momentum and the {Sen} geometry of two-surfaces},
     journal = {Banach Center Publications},
     pages = {205--219},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {1997},
     doi = {10.4064/-41-1-205-219},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/-41-1-205-219/}
}
TY  - JOUR
AU  - László Szabados
TI  - Quasi-local energy-momentum and the Sen geometry of two-surfaces
JO  - Banach Center Publications
PY  - 1997
SP  - 205
EP  - 219
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/-41-1-205-219/
DO  - 10.4064/-41-1-205-219
LA  - en
ID  - 10_4064__41_1_205_219
ER  - 
%0 Journal Article
%A László Szabados
%T Quasi-local energy-momentum and the Sen geometry of two-surfaces
%J Banach Center Publications
%D 1997
%P 205-219
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/-41-1-205-219/
%R 10.4064/-41-1-205-219
%G en
%F 10_4064__41_1_205_219
László Szabados. Quasi-local energy-momentum and the Sen geometry of two-surfaces. Banach Center Publications, Tome 41 (1997) no. 1, pp. 205-219. doi : 10.4064/-41-1-205-219. http://geodesic.mathdoc.fr/articles/10.4064/-41-1-205-219/

Cité par Sources :