Quasi-local energy-momentum and the Sen geometry of two-surfaces
Banach Center Publications, Tome 41 (1997) no. 1, pp. 205-219
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We review the main ideas of the two dimensional Sen geometry and apply these concepts i. in finding the `most natural' quasi-local energy-momentum, ii. in characterizing the zero energy-momentum and zero mass configurations and iii. in finding the quasi-local radiative modes of general relativity.
@article{10_4064__41_1_205_219,
author = {L\'aszl\'o Szabados},
title = {Quasi-local energy-momentum and the {Sen} geometry of two-surfaces},
journal = {Banach Center Publications},
pages = {205--219},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {1997},
doi = {10.4064/-41-1-205-219},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/-41-1-205-219/}
}
TY - JOUR AU - László Szabados TI - Quasi-local energy-momentum and the Sen geometry of two-surfaces JO - Banach Center Publications PY - 1997 SP - 205 EP - 219 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/-41-1-205-219/ DO - 10.4064/-41-1-205-219 LA - en ID - 10_4064__41_1_205_219 ER -
László Szabados. Quasi-local energy-momentum and the Sen geometry of two-surfaces. Banach Center Publications, Tome 41 (1997) no. 1, pp. 205-219. doi: 10.4064/-41-1-205-219
Cité par Sources :