Well posed reduced systems for the Einstein equations
Banach Center Publications, Tome 41 (1997) no. 1, pp. 119-131
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We review some well posed formulations of the evolution part of the Cauchy problem of General Relativity that we have recently obtained. We include also a new first order symmetric hyperbolic system based directly on the Riemann tensor and the full Bianchi identities. It has only physical characteristics and matter sources can be included. It is completely equivalent to our other system with these properties.
Affiliations des auteurs :
Yvonne Choquet-Bruhat 1 ; James York 1
@article{10_4064__41_1_119_131,
author = {Yvonne Choquet-Bruhat and James York},
title = {Well posed reduced systems for the {Einstein} equations},
journal = {Banach Center Publications},
pages = {119--131},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {1997},
doi = {10.4064/-41-1-119-131},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/-41-1-119-131/}
}
TY - JOUR AU - Yvonne Choquet-Bruhat AU - James York TI - Well posed reduced systems for the Einstein equations JO - Banach Center Publications PY - 1997 SP - 119 EP - 131 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/-41-1-119-131/ DO - 10.4064/-41-1-119-131 LA - en ID - 10_4064__41_1_119_131 ER -
%0 Journal Article %A Yvonne Choquet-Bruhat %A James York %T Well posed reduced systems for the Einstein equations %J Banach Center Publications %D 1997 %P 119-131 %V 41 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/-41-1-119-131/ %R 10.4064/-41-1-119-131 %G en %F 10_4064__41_1_119_131
Yvonne Choquet-Bruhat; James York. Well posed reduced systems for the Einstein equations. Banach Center Publications, Tome 41 (1997) no. 1, pp. 119-131. doi: 10.4064/-41-1-119-131
Cité par Sources :