Well posed reduced systems for the Einstein equations
Banach Center Publications, Tome 41 (1997) no. 1, pp. 119-131.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We review some well posed formulations of the evolution part of the Cauchy problem of General Relativity that we have recently obtained. We include also a new first order symmetric hyperbolic system based directly on the Riemann tensor and the full Bianchi identities. It has only physical characteristics and matter sources can be included. It is completely equivalent to our other system with these properties.
DOI : 10.4064/-41-1-119-131

Yvonne Choquet-Bruhat 1 ; James York 1

1
@article{10_4064__41_1_119_131,
     author = {Yvonne Choquet-Bruhat and James York},
     title = {Well posed reduced systems for the {Einstein} equations},
     journal = {Banach Center Publications},
     pages = {119--131},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {1997},
     doi = {10.4064/-41-1-119-131},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/-41-1-119-131/}
}
TY  - JOUR
AU  - Yvonne Choquet-Bruhat
AU  - James York
TI  - Well posed reduced systems for the Einstein equations
JO  - Banach Center Publications
PY  - 1997
SP  - 119
EP  - 131
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/-41-1-119-131/
DO  - 10.4064/-41-1-119-131
LA  - en
ID  - 10_4064__41_1_119_131
ER  - 
%0 Journal Article
%A Yvonne Choquet-Bruhat
%A James York
%T Well posed reduced systems for the Einstein equations
%J Banach Center Publications
%D 1997
%P 119-131
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/-41-1-119-131/
%R 10.4064/-41-1-119-131
%G en
%F 10_4064__41_1_119_131
Yvonne Choquet-Bruhat; James York. Well posed reduced systems for the Einstein equations. Banach Center Publications, Tome 41 (1997) no. 1, pp. 119-131. doi : 10.4064/-41-1-119-131. http://geodesic.mathdoc.fr/articles/10.4064/-41-1-119-131/

Cité par Sources :